Supporting Information

Probing calcium solvation by XAS, MD and DFT calculations

Feipeng Yang,^{ab} Yi-Sheng Liu,^{ab} Xuefei Feng,^{ab} Kun Qian,^c Li Cheng Kao,^b Yang Ha,^b Nathan T. Hahn,^{ad} Trevor J Seguin,^{ae} Mesfin Tsige,^c Wanli Yang,^b Kevin R. Zavadil,^{ad} Kristin A. Persson,^{aef} Jinghua Guo^{*abg}

^a Joint Center for Energy Storage Research, Lemont, IL 60439, USA.

^b Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

^c Department of Polymer Science, The University of Akron, Akron, OH 44325, USA.

^d Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, NM 87185, USA.

^e Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.

^f Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, USA.

^g Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA.

Email: jguo@lbl.gov

MD simulation details:

The simulations were initially equilibrated using LAMMPS¹ under isothermal-isobaric (NPT) ensemble at a temperature of 300 K and a pressure of 1 atmosphere, followed by the canonical ensemble (NVT). A cut-off distance of 13 Å and 14 Å were used for nonbonded interactions in aqueous and methanol solution, respectively. For all electrostatic interactions, the mesh Ewald method was used². Each of the simulations was run for at least 20 ns with a time step of 1fs and the last 1 ns data were used for analysis.

References:

- 1) S. Plimpton, J. Comput. Phys., 1995, 117, 1-19.
- U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, J. Chem. Phys., 1995, 103, 8577–8593.

Figure S1 Molecular dynamics (MD) simulation for (a) the first solvation shell around Ca^{2+} in 0.5 M $CaCl_2 \cdot 2H_2O$ methanol solution; (b) the first and second solvation shells around Ca^{2+} in 0.5 M $CaCl_2 \cdot 2H_2O$ methanol solution; (c) the first solvation shell around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ methanol solution; (d) the first and second solvation shells around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ methanol solution; (d) the first and second solvation shells around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ methanol solution; (d) the first and second solvation shells around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ methanol solution; (d) the first and second solvation shells around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ methanol solution. (Red: Ca^{2+} , Orange: Cl^-)

Figure S2 Molecular dynamics (MD) simualtion for (a) the first solvation shell around Ca^{2+} in 0.5 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (b) the first and second solvation shells around Ca^{2+} in 0.5 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (c) the first solvation shell around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (d) the first and second solvation shells around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (d) the first and second solvation shells around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (d) the first and second solvation shells around Ca^{2+} in 1.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution.

Figure S3 Molecular dynamics (MD) simualtion for (a) the first solvation shell around Ca^{2+} in 1.5 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (b) the first and second solvation shells around Ca^{2+} in 1.5 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (c) the first solvation shell around Ca^{2+} in 3.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (d) the first and second solvation shells around Ca^{2+} in 3.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (d) the first and second solvation shells around Ca^{2+} in 3.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution; (d) the first and second solvation shells around Ca^{2+} in 3.0 M $CaCl_2 \cdot 2H_2O$ aqueous solution.