Supporting Information

Converting Cellulose Nanocrystals into Photocatalysts by Functionalisation with Titanium Dioxide Nanorods and Gold Nanocrystals

Santhosh S Nair^{1#}, Jianhong Chen,^{1#} Adam Slabon,^{1*} Aji P Mathew^{1*}

¹Division of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 10691, Stockholm, Sweden

Figure S1. a) AFM images of typical CNCs produced by sulphuric acid hydrolysis and (b-d)CNC/TiO2-NRs hybrids based on sulphonyl, carboxyl and phosphoryl functionalized CNC nanocrystals.

Figure S2. TGA curves of the CNC/TiO₂-NRs (90), CNC/TiO₂-NRs(150) (ramp 10 °C/min, 35–850 °C, in air)

Figure S3. Nitrogen adsorption-desorption BET isotherms of CNC/TiO₂-NRs (90) and CNC/TiO₂-NRs(150)

Figure S4. TEM image of Au NCs before decoration

Figure S5. Tauc plot images of CNC/TiO₂-NRs(90), CNC/TiO₂-NRs(150), CNC/TiO₂-NRs(90)/Au NCs and CNC/TiO₂-NRs(150)/Au NCs

Degradation mechanism

During the solar simulator illumination, LSPR-induced hot electrons in Au NCs on the surface of TiO_2 NRs with energies higher than the Schottky barrier energy can be injected into the conductive band (CB) of TiO_2 .¹ This process can significantly promote the separation of electron-hole pairs. The injected electrons in CB are trapped by absorbed O_2 molecules and then participated in the photoreduction reaction to get O_2^- . However, O_2^- is quite unstable in aqueous solution, so that it would readily decompose into hydroxyl radicals.^{2,3}

 $0_2 + e^- \rightarrow \cdot 0_2^-$

 $\cdot O_2^- + 2H^+ + 2e^- \rightarrow \cdot OH + OH^-$

After the transfer of hot electrons, the holes on Au NCs are supposed to participate in photo-oxidation reaction with superoxide anion radicals O_2^- , yielding singlet oxygen $(1O_2)$.⁴

 $0_{2}^{-} + h^{+} \rightarrow 0_{2}^{-}$

The photolysis of hydrogen peroxide in aqueous to hydroxyl radicals happened simultaneously, following the reaction: $H_2O_2 + hv \rightarrow 2.0H$

Finally, the reactive oxygen species including 'OH, O_2^- and O_2^- can easily degrade RhB into O_2 and $H_2O_2^{5,6}$

1. Furube, A.; Du, L.; Hara, K.; Katoh, R.; Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. *J. Am. Chem. Soc.* **2007**, *129*, 14852-14853.

2. Shi, H.; Wang, X.; Zheng, M.; Wu, X.; Chen, Y.; Yang, Z.; Zhang, G.; Duan, H. Hot-Electrons Mediated Efficient Visible-Light Photocatalysis of Hierarchical Black Au-TiO2 Nanorod Arrays on Flexible Substrate. *Adv. Mater. Interfaces* **2016**, *3*, 1600588.

3. Sułek, A.; Pucelik, B.; Kuncewicz, J.; Dubin, G.; Dąbrowski, J. M. Sensitization of TiO2 by halogenated porphyrin derivatives for visible light biomedical and environmental photocatalysis. *Catal. Today* **2019**, *335*, 538-549.

4. Li, B.; Hao, Y.; Shao, X.; Tang, H.; Wang, T.; Zhu, J.; Yan, S. Synthesis of hierarchically porous metal oxides and Au/TiO2 nanohybrids for photodegradation of organic dye and catalytic reduction of 4-nitrophenol. *J. Catal.* **2015**, *329*, 368-378.

5. Ansari, S. A.; Khan, M. M.; Ansari, M. O.; Cho, M. H. Gold nanoparticles-sensitized wide and narrow band gap TiO2 for visible light applications: a comparative study. *New J. Chem.* **2015**, *39*, 4708-4715.

6. Yin, M.; Li, Z.; Kou, J.; Zou, Z. Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/Eosin Y/Rhodamine B system. *Environ. Sci. Technol.* **2009**, *43*, 8361-8366.