Supporting Information

Synthesis of benzonaphthofuroquinones and benzoylnaphthindolizinediones by reactions of flavonoids with dichlone under

basylous, oxygenous and aqueous conditions: their cytotoxic and apoptopic activities

Peng Luo^{a, c}, Wanxing Wei^a, Saqlain Haider^b, Shabana I. Khan^b, Mei Wang^b, Weigao Pan^{*a, c}, Amar G. Chittiboyina^{*b}

^a College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
^b National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, USA
^c Guangxi University of Chinese Medicine, Nanning, Guangxi 530001, China

*Corresponding authors, E-mail address: agao81706672@163.com (Weigao Pan), amar@olemiss.edu (Amar G. Chittiboyina).

1 Figures of apoptosis analysis and western blotting analysis

1.1 Apoptosis analysis

Figure S1. Derivatives induce apoptosis in Human Leukemia

Figure S2. Derivatives induce apoptosis in Melanoma

Figure S3. Derivatives regulate the apoptopic markers

¹³C-NMR of derivative 1

C--400DMSO

400dmso-DEPT90-DEPT135-C

HSQC of derivative 1

2.2. NMR spectra of derivative 2 ¹H-NMR of derivative 2

¹³C-NMR of derivative **2**

red-100DMSO-DEPT45,135,C

2.3. NMR spectra of derivative **3** ¹H-NMR of derivative **3**

black-H-400DMSO

black-DEPT45,135,C-100DMSO

HSQC of derivative 3

2.4. NMR spectra of derivative 4 ¹H-NMR of derivative 4 _{A-H-400-CDC13+MeOD}

¹³C-NMR of derivative 4

A-C-DEPT135, 90-400DMS0

2.5. NMR spectra of derivative 5 ¹H-NMR of derivative 5 B3-H-400DMSO

¹³C-NMR of derivative **6**

B2-2-C-100DMSO

B2-2-C-DEPT135,90-100DMSO

S46

HSQC of derivative 6

¹H-¹H COSY of derivative **6**

2.7. NMR spectra of derivative 7 ¹H-NMR of derivative 7

¹³C-NMR of derivative 7

500chloroform-C

deptq135

S60

¹³C-NMR of derivative 8

[D2-1-1-1]-C-DEPT135-500cdc1

2.9. NMR spectra of derivative 9 ¹H-NMR of derivative 9 Naringenin-A1-H-400dmso

¹³C-NMR of derivative 9

naringenin-A1-C-DEPT135,90-100DMS0

HMBC of derivative 9

2.10. NMR spectra of derivative **10** ¹H-NMR of derivative **10**

DEPT of derivative 10

C-DEPT135-100DMSO

HSQC of derivative 10

¹H-¹H COSY of derivative **10**

HMBC of derivative 10

3 Crystal structures of benzonaphthofuroquinone and benzoylnaphthindolizinedione

3.1 Crystal structure of **4** (Our previous work, which was reported in the literature: P. Luo, A.-G. Chittiboyina, W.-G. Pan and W.-X. Wei, *Z. Krist.-New Cryst. St.*, 2020, 235, 565-567.)

checkCIF/PLAT	ON report
---------------	-----------

Bond precisi	lon:	C-C = 0.004	2 A	M	Wavelength=1.54178
Cell:	a=3.7133(1	.) b=9.	7214(4)	c=15.57	65(6)
	alpha=90	beta	=96.121(2)	gamma=9	0
Temperature:	150 K				
	C	alculated			Reported
Volume	5.	59.08(3)			559.08(3)
Space group	Р	С			Рс
Hall group	Р	-2ус			P -2yc
Moiety formu	ıla C	16 H8 O4			C16 H8 O4
Sum formula	C	16 H8 O4			C16 H8 O4
Mr	2	64.22			264.22
Dx,g cm-3	1	.570			1.570
Z	2				2
Mu (mm-1)	0	.951			0.951
F000	2	72.0			272.0
F000'	2	72.94			
h,k,lmax	4	,12,19			4,12,19
Nref	23	302[1157]			1904
Tmin,Tmax	0	.843,0.909			
Tmin'	0	.684			
Correction m	nethod= Not	given			
Data complet	eness= 1.6	5/0.83	Theta(max)=	74.702	
R(reflection	ns)= 0.0506	(1848)	wR2(refle	ections)=	0.1274(1904)
S = 1.097		Npar= 182			

3.2 Crystal structure of 7 (Our previous work, which was reported in the literature: P. Luo, A.-G. Chittiboyina, M. Wang, I.-A. Khan, W.-G. Pan and W.-X. Wei, *Z. Krist.-New Cryst. St.*, 2020, 235, 105-107.)

Bond precision:	C-C = 0.0020 A	Waveleng	gth=0.71073
Cell:	a=11.6537(6)	b=5.1315(2)	c=26.8047(13
	alpha=90	beta=96.266(3)	gamma=90
Temperature:	90 K		
	Calculated	Reporte	ed
Volume	1593.37(13)	1593.37(13)	
Space group	P 21/n	P 21/n	
Hall group	-P 2yn	-P 2yn	
Moiety formula	C23 H13 N 04	C23 H13	3 N 04
Sum formula	C23 H13 N 04	C23 H13	3 N 04
Mr	367.34	367.34	
Dx,g cm-3	1.531	1.531	
Z	4	4	
Mu (mm-1)	0.106	0.106	
F000	760.0	760.0	
F000′	760.39		
h,k,lmax	16,7,38	16,7,3	7
Nref	4865	4810	
Tmin,Tmax	0.979,0.997	0.829,0	.997
Tmin'	0.968		

Correction method= # Reported T Limits: Tmin=0.829 Tmax=0.997 AbsCorr = MULTI-SCAN

Data completeness= 0.989	Theta(max) = 30.513
R(reflections) = 0.0531(3317)	wR2(reflections) = 0.1432(4810)
S = 1.023 Npar=	256