Highly Efficient Perovskite Solar Cells with All-Dip-Coating Processed (CH₃)₃NPbI₃₋

xClx Perovskite Materials from Aqueous Non-halide Lead Precursor

Muhammad Adnan^a, Zobia Irshad^a, and Jae Kwan Lee^{a,b, *}

^a Department of Chemistry, Graduate School, Chosun University, Gwangju, 501-759,

Republic of Korea.

^b Department of Chemistry Education/Carbon Materials, Chosun University, Gwangju, 501-

759, Republic of Korea.

*Corresponding Author. Tel: +82 62 230 7319, Fax: +82 62 232 8122,

E-mail address: chemedujk@chosun.ac.kr.

Figure. S1: Photographic images of MAPbI₃ perovskite material deposited by sequentially dipping a ZnO-covered TiO_2/FTO substrate in aqueous $Pb(NO_3)_2$ and MAI mixed solutions followed by repetition of the SSIER process before/after annealing at 100°C

Figure. S2: Photographic images of MAPbI_{3-x}Cl_x perovskite material deposited by sequentially dipping a ZnO-covered TiO₂/FTO substrate in aqueous Pb(NO₃)₂ and 0.45-MACl/MAI mixed solutions followed by repetition of the SSIER process before/after annealing at 100°C.

Figure. S3: Photographic images of MAPbI_{3-x}Cl_x perovskite material deposited by sequentially dipping a ZnO-covered TiO₂/FTO substrate in aqueous Pb(NO₃)₂ and 0.75-MACl/MAI mixed solutions followed by repetition of the SSIER process before/after annealing at 100°C.

Figure. S4: Photographic images of MAPbI_{3-x}Cl_x perovskite material deposited by sequentially dipping a ZnO-covered TiO₂/FTO substrate in aqueous Pb(NO₃)₂ and 0.90-MACl/MAI mixed solutions followed by repetition of the SSIER process before/after annealing at 100°C.

Figure S5: Device performances statistics based on more than 200 individual with MAPbI₃. $_xCl_x$ perovskite layers fabricated via a simple all-dip-coating approach in 0.45-MACl/MAI under the optimized conditions.

Figure S6: Device performances statistics based on more than 200 individuals with MAPbI₃. $_x$ Cl_x perovskite layers fabricated via a simple all-dip-coating approach in 0.75-MACl/MAI under the optimized conditions.

Figure S7: Device performances statistics based on more than 200 individuals with MAPbI₃₋ $_{x}Cl_{x}$ perovskite layers fabricated via a simple all-dip-coating approach in 0.90-MACl/MAI under the optimized conditions.

Table S1: The core level XPS characterization of composition evolution of Pb, I, and Cl elements found in MAPbI_{3-x}Cl_x perovskite material deposited by sequentially dipping a ZnO-covered TiO_2/FTO substrate in aqueous Pb(NO₃)₂ and MACl/MAI mixed solutions.

Elements	0.45-MACl/MAI (%)	0.75-MACl/MAI (%)	0.91-MACl/MAI (%)
Pb	14.31	18.88	20.4
Ι	85.15	80.17	77.18
Cl	0.54	0.95	2.42
Cl/I	0.63	1.18	3.14

Table S2. Hhysteresis of the photovoltaic performances in both scan directions for the PrSC

MACI/MAI	Scan	$J_{\rm sc}$ (mA/cm ²)	$V_{\rm oc}(V)$	$F \cdot F$	$\eta_{max/ave}(\%)$
0.45	Forward	21.82	0.94	0.58	11.90
U.45- MACI/MAI	Reverse	20.09	0.99	0.65	12.93
MACI/MAI	Average	20.96	0.97	0.62	12.42
0.75	Forward	20.82	1.00	0.68	14.16
U.75- MACI/MAI	Reverse	21.31	1.04	0.69	15.29
MACI/MAI	Average	21.07	1.02	0.69	14.73
0.01	Forward	22.35	0.94	0.59	12.40
0.91- Macumai	Reverse	21.11	0.99	0.66	13.79
	Average	21.73	0.97	0.63	13.10

devices with the MAPbI_{3-x}Cl_x perovskite layer prepared in MACl/MAI.^a

^{a)} The performances are determined under simulated 100 mW/cm² AM 1.5G illumination. The light intensity using calibrated standard silicon solar cells with a proactive window made from KG5 filter glass traced to the National Renewable Energy Laboratory. A non-reflective metal plate mask with an aperture of 4.5 mm² was used for the solar cells.