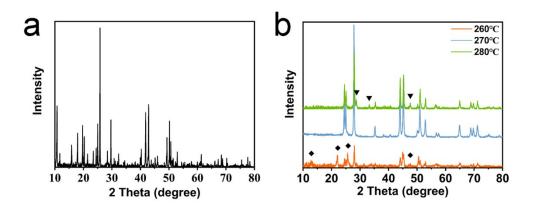
Supporting Information

Hyper Oxygen Incorporation in CeF₃: A New Intermediate-Band

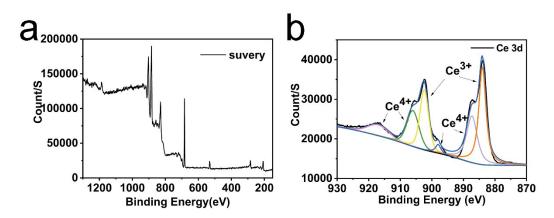
Photocatalyst for Antibiotic Degradation under Visible/NIR Light


Bing Han^a, Siqi Yu^a, Dian Zhao^{a,b}, Yunchao Lou^a, Jiayang Gao^a, Zhe Liu^a, Zhiyu Wang^{a,*} and Guodong Qian ^{a,*}

^a State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

Corresponding Author: Prof. Zhiyu Wang, Prof. Guodong Qian

E-mail: wangzhiyu@zju.edu.cn, gdqian@zju.edu.cn


^b Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China

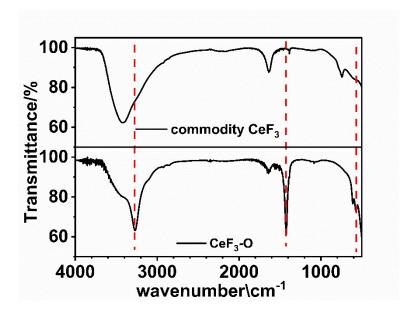

Figure S1. the typical XRD patterns of the precursor JCPDS NO.70-4378(a); samples calcined at different temperature(b). ◆ sign is the precursor; ▼ sign is CeO₂ (JCPDS NO. 08-0045).

Table S1. The element content of CeF₃-O

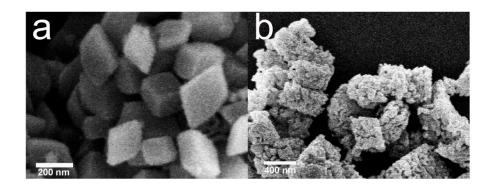

Element	Ce	F	О
Atomic %	21.45	62.82	15.73

Figure S2. The survey spectrum of CeF₃-O XPS: Ce 3d5 (884.1 eV), F 1s (684.4 eV), O 1s (531.7 eV), Ce Auger (830.0 eV), and Ce 3d3 (902.4 eV) (a); The spectrum of Ce 3d (b).

Figure S3. FTIR spectra of commercial CeF₃ and CeF₃-O. The peak at 750 cm⁻¹ of commercial CeF₃ is attributed to-CH₂-, and it maybe from organ impurity.

Figure S4. SEM of the precursor $H_{25.5}(NH_4)_{10.5}Ce_9O_{27}F_{18}$ (a) and CeF_3 -O(b)

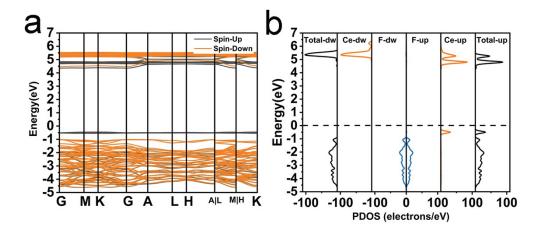


Figure S5. The calculated band structure and DOS of pristine CeF₃.

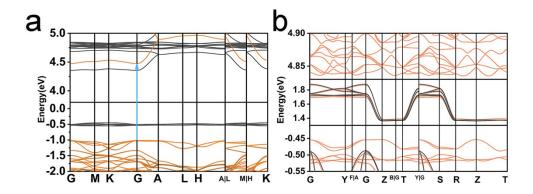


Figure S6. partial enlargement of DFT calculated band structure of pristine CeF₃ and CeF₃-O.

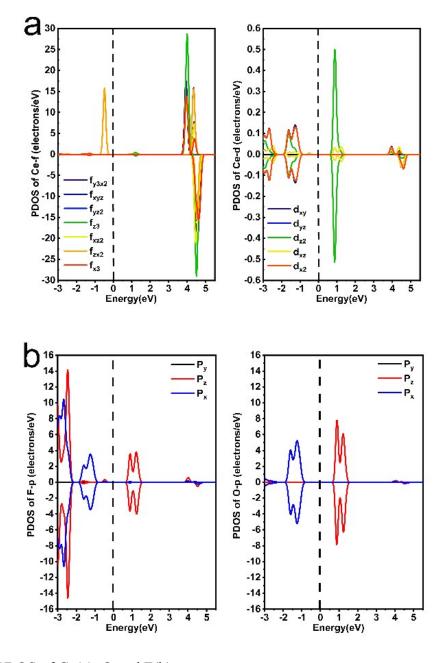
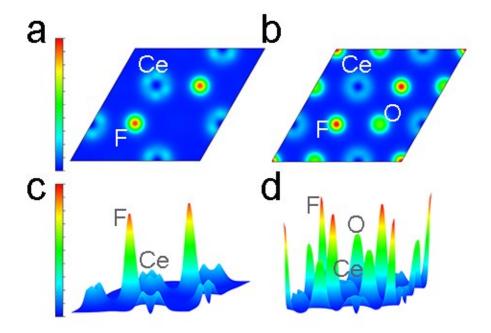
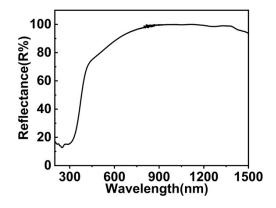
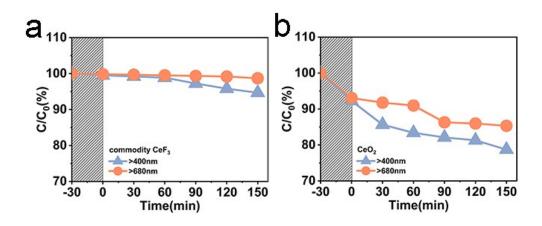
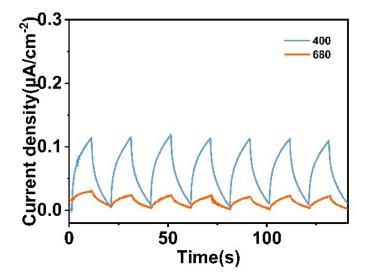



Figure S7. PDOS of Ce(a), O and F(b).

Figure S8. Two dimensional charge density distribution plots of pristine CeF₃ (a,c) and CeF₃-O (b,d) on [001] plane.

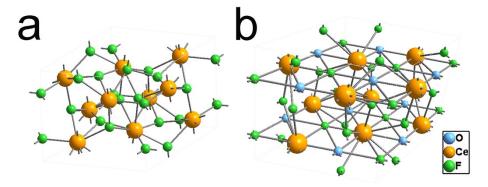

Figure S9. UV-Vis-NIR diffuse reflectance absorption (DRS) spectrum of CeF₃-O.

Figure S10. Photodegradation of TC-HCl by $CeF_3(a)$ and $CeO_2(b)$ under different cutoff filters (λ >400 nm and λ >680 nm). the photodegradation of TC-HCl by CeO_2 is is because the filter (cutoff 400nm) has an optical edge extending to about 380nm. Compared with both of commercial CeF_3 and CeO_2 under visible and NIR light, the CeF_3 -O has excellent photocatalysis activity under visible light. CeO_2 was synthesized by the similar calcination of precursor $H_{25.5}(NH_4)_{10.5}Ce_9O_{27}F_{18}$ at 600°C for 1h.

Figure S11. Photocurrent responses of the CeF_3 -O under visible light irradiation(λ >400 nm) and near-infrared light irradiation(λ >680 nm). The CeF_3 -O under visible light showed the stronger photocurrent transient response in comparison to that of near-infrared light, indicating the higher charge separation efficiency.

Figure S12 the structure of pristine CeF_3 (a) and CeF_3 -O (b)

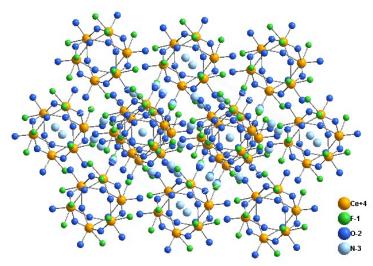


Figure S13 the structure of precursor $H_{25.5}(NH_4)_{10.5}Ce_9O_{27}F_{18}$

Table S2. Details of calculate structure for CeF₃-O.

Configuration	CeF ₃ -O		
Lattice parameter (A°)	a 7.128	b 7.128	c 7.288
Cell angle	α 90°	β 90 °	γ 120 °
Ce1	0.33333	0.33333	0.00000
F1	0.38000	0.04600	0.16000
F2	0.33333	0.66667	0.08330
F3	0.00000	0.00000	0.25000
0	0.33333	0.33333	0.25000

Table S3. The location and number of k-points

Number	Label			
1	GAMMA	0	0	0
2	Y	0.5	0.5	0
3	T	0.5	0.5	0.5
4	T_2	0.5	0.5	-0.5
5	Z	0	0	0.5
6	Z_2	0	0	-0.5
7	S	0	0.5	0
8	R	0	0.5	0.5
9	R_2	0	0.5	-0.5
10	DELTA_0	-0.33321	0.333207	0
11	F_0	0.333207	0.666793	0
12	B_0	-0.33321	0.333207	0.5
13	B_2	-0.33321	0.333207	-0.5
14	G_0	0.333207	0.666793	0.5
15	G_2	0.333207	0.666793	-0.5