Simplified Computational Model for Generating Biological Networks Electronic Supplementary Information

Matthew H J Bailey,* David Ormrod Morley,* and Mark Wilson*

SII Image Analysis Algorithm

SI I. 1 Image to Graph

In this work, we describe an image analysis algorithm to extract polygon statistics from experimental microscope images. This algorithm relies on image processing software, Image $\sqrt[30]{30}$, and specifically the Ridge Detection plugin. As the images show very different contrast levels, colourations and resolution, each image had to be manually assessed in order to extract reliable data. We anticipate that this problem will be eased if the process were applied to a consistent set of images from a single experiment. Where edges were unclear in images and could not be detected by ImAGEJ, we manually highlighted them. The output consisted of node coordinates and their associated edge connectivity. The next step of the algorithm wass to fit edges in a graph to each line segment. This was performed using an orthogonal least squares regression on each line segment to find the best straight line fit. Each line segment was placed in a graph as a pair of nodes connected only to each other, and the nodes were associated with the end positions of the line segments in the planar embedding. Next, nearby groups of nodes were connected; if two nodes were within a cutoff (usually chosen to be in the range 5-10 pixels, depending on the scale and resolution of the image) they were grouped into a single node cluster. This process was repeated along a chain. For example, if node a and node b were within the cutoff, and node c was within a cutoff of b but outside the cutoff of a, they would all be clustered into $a b c$. These clusters preserved the connections of each of the line segments included, until a connected graph was formed.

SI I. 2 Graph to Polygons

With a connected graph formed, we had to extract the polygon data. We did this by removing all nodes with $k=1$ (including nodes on the boundaries of the image) repeatedly until no nodes with $k=1$ existed. Next, we constructed the Delaunay triangulation of the points, which was a superset of the connected graph for all the systems we tested. The simplices in the Delaunay triangulation are key to identifying the polygon structure. We one-by-one removed the edges in the Delaunay triangulation that were not present in the original graph. Where removing an edge joined two polygons, we tracked that and marked them as a single polygon. When the process had removed all edges that were not in the original connected graph, we had a list of all the polygons in the embedded graph.

This avoids problems with previous definitions of polygon structure as, owing to the Delaunay triangulation, there is only one unambiguous assignment of these polygons. Finally, we constructed a dual graph, with the nodes being placed at the centroids of each ring and the edges representing two rings sharing one or more edges. We used this dual graph to calculate the assortativity of the ring network.

SI II Data

We extracted data from images produced by Barnard et al. ${ }^{[32}$, Bos et al. ${ }^{33}$, Wang et al. ${ }^{34}$, Yurchenco and Furthmayr ${ }^{[35]}$, Fabris et al. ${ }^{37}$ and Yurchenco and Ruben ${ }^{36}$ The full data are available here in Table SI 1

[^0]| Author | Figure | $\langle k\rangle$ | $\mu_{2}(k)$ | r_{k} | $\langle n\rangle$ | $\mu_{2}(n)$ | r_{n} | $N_{\text {node }}$ | $N_{\text {Polygon }}$ | $p_{k, 3}$ | $p_{n, 6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Barnard et al. | 2 | 2.525 | 0.406 | 0.142 | 6.989 | 24.634 | -0.138 | 385 | 91 | 0.385 | 0.077 |
| Barnard et al. | 4 c | 2.961 | 0.378 | -0.071 | 5.574 | 4.113 | -0.109 | 283 | 135 | 0.696 | 0.185 |
| Barnard et al. | 6 | 3.154 | 0.824 | 0.012 | 5.122 | 3.602 | -0.048 | 520 | 278 | 0.529 | 0.169 |
| Bos et al. | 2 a | 2.780 | 0.335 | -0.054 | 5.825 | 7.892 | -0.209 | 100 | 40 | 0.620 | 0.225 |
| Bos et al. | 5 c | 2.884 | 0.198 | 0.171 | 5.308 | 4.324 | -0.228 | 86 | 39 | 0.791 | 0.128 |
| Boset al. | 5 d | 2.974 | 0.396 | 0.188 | 5.385 | 6.461 | -0.107 | 228 | 109 | 0.632 | 0.119 |
| Fabris et al. | 3 f | 2.335 | 0.315 | -0.108 | 5.893 | 15.210 | 0.162 | 155 | 19 | 0.246 | 0.316 |
| Fabris et al. | 4 b | 2.365 | 0.285 | -0.077 | 7.043 | 27.154 | -0.147 | 230 | 32 | 0.313 | 0.094 |
| Wang et al. | 1 c | 2.657 | 0.681 | 0.064 | 7.250 | 125.990 | -0.124 | 621 | 185 | 0.353 | 0.081 |
| Wang et al. | 2 a | 2.534 | 0.372 | -0.027 | 8.497 | 31.807 | -0.100 | 618 | 163 | 0.416 | 0.153 |
| Wang et al. | 2 d | 2.867 | 0.277 | -0.022 | 5.545 | 3.021 | -0.131 | 150 | 66 | 0.727 | 0.258 |
| Wang et al. | 3 b | 2.945 | 0.805 | -0.019 | 5.735 | 15.342 | -0.057 | 1071 | 498 | 0.458 | 0.122 |
| Wang et al. | 4 a | 3.006 | 0.317 | 0.085 | 5.520 | 5.391 | -0.120 | 348 | 173 | 0.684 | 0.139 |
| Wang et al. | 5 b | 2.531 | 0.301 | -0.031 | 8.755 | 27.563 | -0.147 | 350 | 94 | 0.480 | 0.128 |
| Wang et al. | 5 c | 2.991 | 0.484 | 0.231 | 5.364 | 4.601 | -0.029 | 216 | 97 | 0.611 | 0.175 |
| Yurchenco and Furthmayr 1984 | 4 b alternative | 2.721 | 0.284 | 0.074 | 6.254 | 6.999 | -0.181 | 172 | 61 | 0.657 | 0.213 |
| Yurchenco and Furthmayr 1984 | 4 b | 2.667 | 0.287 | -0.033 | 6.593 | 10.510 | -0.184 | 159 | 54 | 0.604 | 0.241 |
| Yurchenco and Ruben 1987 | 1 c | 2.792 | 0.395 | -0.028 | 5.093 | 2.610 | 0.028 | 106 | 42 | 0.595 | 0.095 |
| Yurchenco and Ruben 1987 | 2 f | 2.696 | 0.303 | 0.170 | 5.880 | 6.443 | -0.363 | 69 | 25 | 0.610 | 0.200 |

Table SI 1 A full table of the experimental data, with the mean node coordination $\langle k\rangle$, the second moment of the node coordination distribution $\mu_{2}(k)$, assortativity of nodes r_{k}, mean polygon size $\langle n\rangle$, the second moment of the polygon size $\mu_{2}(n)$, assortativity of polygons r_{n}, number of nodes and polygons $N_{\text {Node }}$ and $N_{\text {Polycoon }}$, as well as the fraction of 3 -coordinate nodes and 6 -members polygons $p_{k, 2}$ and $p_{n, 6}$. Data is taken from Barnard et al. 32 ,

Fig. SI 1 The bond between edge a and b is switched to be between edges a and c. After the switch, node c is four coordinate and node b is two coordinate, with all others being three coordinate. Finally, the network geometry is optimised to a local minimum of the potential.

SI III Bond switching.

Figure SI 1 shows a schematic of the bond switching algorithm described in the main text. The solid lines represent real edges in the graph, and the dotted lines represent edges in the dual graph, which connects the centres of polygons. The edge between a and b is switched to be between a and c. This changes the coordination numbers of b from 2 to 3 , and c from 3 to 4 , preserving the average coordination number $\langle k\rangle=3$. The number of polygon edges (represented as coordination in the dual graph) changes from $\{6,6,6,6\}$ to $\{5,6,6,7\}$.

[^0]: Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ; E-mail: mark.wilson@chem.ox.ac.uk * these authors contributed equally to this work.

