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SI I Image Analysis Algorithm
SI I.1 Image to Graph
In this work, we describe an image analysis algorithm to extract polygon statistics from experimental microscope images. This algorithm
relies on image processing software, IMAGEJ 30, and specifically the RIDGE DETECTION plugin. As the images show very different contrast
levels, colourations and resolution, each image had to be manually assessed in order to extract reliable data. We anticipate that this
problem will be eased if the process were applied to a consistent set of images from a single experiment. Where edges were unclear
in images and could not be detected by IMAGEJ, we manually highlighted them. The output consisted of node coordinates and their
associated edge connectivity. The next step of the algorithm wass to fit edges in a graph to each line segment. This was performed using
an orthogonal least squares regression on each line segment to find the best straight line fit. Each line segment was placed in a graph
as a pair of nodes connected only to each other, and the nodes were associated with the end positions of the line segments in the planar
embedding. Next, nearby groups of nodes were connected; if two nodes were within a cutoff (usually chosen to be in the range 5-10
pixels, depending on the scale and resolution of the image) they were grouped into a single node cluster. This process was repeated
along a chain. For example, if node a and node b were within the cutoff, and node c was within a cutoff of b but outside the cutoff of a,
they would all be clustered into abc. These clusters preserved the connections of each of the line segments included, until a connected
graph was formed.

SI I.2 Graph to Polygons
With a connected graph formed, we had to extract the polygon data. We did this by removing all nodes with k = 1 (including nodes
on the boundaries of the image) repeatedly until no nodes with k = 1 existed. Next, we constructed the Delaunay triangulation of the
points, which was a superset of the connected graph for all the systems we tested. The simplices in the Delaunay triangulation are
key to identifying the polygon structure. We one-by-one removed the edges in the Delaunay triangulation that were not present in the
original graph. Where removing an edge joined two polygons, we tracked that and marked them as a single polygon. When the process
had removed all edges that were not in the original connected graph, we had a list of all the polygons in the embedded graph.

This avoids problems with previous definitions of polygon structure as, owing to the Delaunay triangulation, there is only one
unambiguous assignment of these polygons. Finally, we constructed a dual graph, with the nodes being placed at the centroids of each
ring and the edges representing two rings sharing one or more edges. We used this dual graph to calculate the assortativity of the ring
network.

SI II Data
We extracted data from images produced by Barnard et al. 32 , Bos et al. 33 , Wang et al. 34 , Yurchenco and Furthmayr 35 , Fabris et al. 37

and Yurchenco and Ruben 36 The full data are available here in Table SI 1.
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Author Figure 〈k〉 µ2(k) rk 〈n〉 µ2(n) rn Nnode NPolygon pk,3 pn,6

Barnard et al. 2 2.525 0.406 0.142 6.989 24.634 -0.138 385 91 0.385 0.077
Barnard et al. 4 c 2.961 0.378 -0.071 5.574 4.113 -0.109 283 135 0.696 0.185
Barnard et al. 6 3.154 0.824 0.012 5.122 3.602 -0.048 520 278 0.529 0.169

Bos et al. 2 a 2.780 0.335 -0.054 5.825 7.892 -0.209 100 40 0.620 0.225
Bos et al. 5 c 2.884 0.198 0.171 5.308 4.324 -0.228 86 39 0.791 0.128
Bos et al. 5 d 2.974 0.396 0.188 5.385 6.461 -0.107 228 109 0.632 0.119

Fabris et al. 3 f 2.335 0.315 -0.108 5.893 15.210 0.162 155 19 0.246 0.316
Fabris et al. 4 b 2.365 0.285 -0.077 7.043 27.154 -0.147 230 32 0.313 0.094
Wang et al. 1 c 2.657 0.681 0.064 7.250 125.990 -0.124 621 185 0.353 0.081
Wang et al. 2 a 2.534 0.372 -0.027 8.497 31.807 -0.100 618 163 0.416 0.153
Wang et al. 2 d 2.867 0.277 -0.022 5.545 3.021 -0.131 150 66 0.727 0.258
Wang et al. 3 b 2.945 0.805 -0.019 5.735 15.342 -0.057 1071 498 0.458 0.122
Wang et al. 4 a 3.006 0.317 0.085 5.520 5.391 -0.120 348 173 0.684 0.139
Wang et al. 5 b 2.531 0.301 -0.031 8.755 27.563 -0.147 350 94 0.480 0.128
Wang et al. 5 c 2.991 0.484 0.231 5.364 4.601 -0.029 216 97 0.611 0.175

Yurchenco and Furthmayr 1984 4 b alternative 2.721 0.284 0.074 6.254 6.999 -0.181 172 61 0.657 0.213
Yurchenco and Furthmayr 1984 4 b 2.667 0.287 -0.033 6.593 10.510 -0.184 159 54 0.604 0.241

Yurchenco and Ruben 1987 1 c 2.792 0.395 -0.028 5.093 2.610 0.028 106 42 0.595 0.095
Yurchenco and Ruben 1987 2 f 2.696 0.303 0.170 5.880 6.443 -0.363 69 25 0.610 0.200

Table SI 1 A full table of the experimental data, with the mean node coordination 〈k〉, the second moment of the node coordination distribution µ2(k),
assortativity of nodes rk, mean polygon size 〈n〉, the second moment of the polygon size µ2(n), assortativity of polygons rn, number of nodes and
polygons NNode and NPolygon, as well as the fraction of 3-coordinate nodes and 6-members polygons pk,2 and pn,6. Data is taken from Barnard et al. 32 ,
Bos et al. 33 , Fabris et al. 37 , Wang et al. 34 , and Yurchenco and Furthmayr 35 , Yurchenco and Ruben 36 .
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Fig. SI 1 The bond between edge a and b is switched to be between edges a and c. After the switch, node c is four coordinate and node b is two
coordinate, with all others being three coordinate. Finally, the network geometry is optimised to a local minimum of the potential.

SI III Bond switching.
Figure SI 1 shows a schematic of the bond switching algorithm described in the main text. The solid lines represent real edges in the
graph, and the dotted lines represent edges in the dual graph, which connects the centres of polygons. The edge between a and b is
switched to be between a and c. This changes the coordination numbers of b from 2 to 3, and c from 3 to 4, preserving the average
coordination number 〈k〉= 3. The number of polygon edges (represented as coordination in the dual graph) changes from {6,6,6,6} to
{5,6,6,7}.
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