Journal Name

ARTICLE TYPE

Cite this: DOI: 10.1039/xxxxxxxxxx

Electronic Supporting Information: Mechanical behavior of SiNC layers on PDMS: Effects of layer thickness, PDMS modulus, and SiNC surface functionality

Alborz Izadi[‡], Mayank Sinha[‡], Cameron Papson, Sara Roccabianca, and Rebecca Anthony*

Received Date Accepted Date

DOI: 10.1039/xxxxxxxxxx

www.rsc.org/journalname

Scanning electron microscopy (SEM) paired with focused ion beam (FIB) milling or physical scoring were used to estimate the thicknesses of the SiNC layers. Figure S-1a and b are example images from 5 min. and 30 min. deposition time on PDMS fabricated with $\alpha=10$. For clarity, we also include in Fig. S-1c a top-down photograph of our sample apparatus for estimating the bifurcation onset angle, illuimated by an ultraviolet (UV) flashlight to show the luminescence of the sample (in this case, surface-functionalized SiNCs).

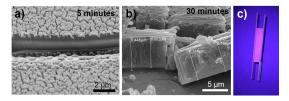


Fig. S-1 SEM imaging was used to estimate the SiNC layer thicknesses. (a) and (b) show example images from depositions of 5 min and 30 min., respectively. The PDMS was fabricated with $\alpha=10$. (c) shows a top-down photograph of the sample apparatus for testing, with the aluminum handles sandwiching the PDMS/SiNC layer. The surface-functionalized sample was illuminated with a UV flashlight during the photograph, showing its luminescence.

FTIR confirmed the reaction of the SiNCs with alkyl chains for the functionalized samples.

Table S-1 Thickness measurements from SEM cross-sectional imaging for SiNC layers deposited on PDMS with varying α . Deposition time and standoff distance between the orifice and the PDMS substrate were kept constant

Ratio of base to curing agent in PDMS, α	Thickness of SiNC film $[\mu m]$
10	4.56 ± 0.31
12	4.41 ± 0.32
20	4.31 ± 0.50

Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA. Fax: 517-353-1750; Tel: 517-432-7491; E-mail: ranthony@egr.msu.edu

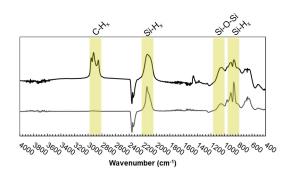


Fig. S-2 Bare SiNCs (bottom trace, in gray) show absorptions for Si- H_x species, while surface-functionalized SiNCs (top trace, in black) also contain evidence of C- H_x stretching vibrations near 2900 cm $^{-1}$. Both samples demonstrate a small amount of oxidation in the form of Si-O-Si absorption, which is expected as the FTIR measurements are performed in air.