Supporting Information

Functional disruption of Staphylococcal Accessory Regulator A from *Staphylococcus aureus* by Silver Ions

Xiangwen Liao^{a*}, Guijuan Jiang^a, Jing Wang^a, Jintao Wang^a

Tel/Fax: +86 791 8380-2393;

E-mail address: <u>liao492008522@163.com</u> (Liao X)

^a School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, 330013, China

 $^{{\}bf *Correspondence\ author}.$

Table S1 Strains, plasmids and primers used in this study

Strain, plasmids	Application	
or primers		
E.coli strains		
XL1-Blue	Plasmid maintenance	
BL21(DE ₃₎	Protein expression	
Staphylococcus aureus	strains	
Newman	Wide-type strain	
Plasmids		
pET47b		
pET47b-sarA	SarA protein expression	
pET47b-sarA ^{C9S}	SarA ^{C9S} protein expression	
Primers for SarA		
	Forward Primer	Reverse Primer
	TAGCTCATATGGCAATTACAAAAATCAAT	TATGGATCCTTATAGTTCAATTTCGTT
SarA	GATTGCTTTGAGTTGTTATCAAT	GTTTGCTTCAGTGATTCG
Primers for qRT-PCR		
16s RNA	CCATAAAGTTGTTCTCAGTT	CATGTCGATCTACGATTACT
hla	ACAATTTTAGAGAGCCCAACTGAT	TCCCCAATTTTGATTCACCAT
hld	AAGAATTTTTATCTTAATTAAGGAAGGA	TTAGTGAATTTGTTCACTGTGTCGA
	GTG	
fnbA	ACAAGTTGAAGTGGCACAGCC	CCGCTACATCTGCTGATCTTGTC

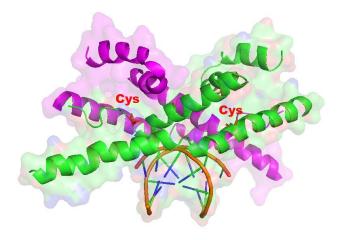


Figure S1 The crystal structure of the SarA (PDB:1fzp) from Staphylococcus aureus

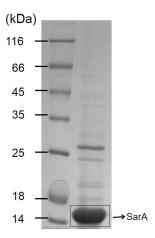
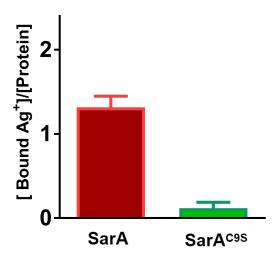
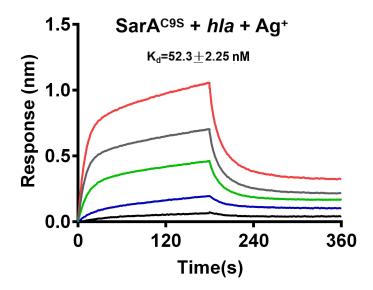




Figure S2 SDS-PAGE analysis of the purified SarA

Figure S3 Ag⁺-binding capability of SarA^{C9S} determined by ICP-MS; SarA^{C9S} were treated with 3 molar equivalents of Ag⁺. Excess amounts of Ag⁺ were removed by a desalting column. The bound Ag⁺ contents were determined by ICP-MS and protein concentrations were measured by BCA assay.

Figure S4 The DNA binding capabilities of SarA^{C9S} with Ag⁺ were measured by BioLayer Interferometry(BLI). Biotinylated hla (300 nM) were captured on pre-immobilized streptavidin Dip and Read sensor heads for 3 min. Association occurred from 0 to 180 s and dissociation was monitored thereafter up to 360 s. The K_d values are presented as the mean \pm s.e.m. derived from a global fitting of all binding curves.