Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Supplementary Material

for

Screening of Metal–Organic Frameworks for Adsorption Heat Transformation under the Guidance of the Structure–Property Relationship

Min Xu^{a,b,*}, Zhangli Liu^{a,b}, Xiulan Huai^{a,b}, Lanting Lou^{a,b}, Jiangfeng Guo^{a,b}

^a Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, 100190, China

b University of Chinese Academy of Sciences, Beijing 100049, China

*Corresponding authors. Tel/Fax.: +86-10-82543035;

*E-mail address: xumin@iet.cn

Samples	a	$q = q/q_{-1}$		q g/g-1		Qa	$V_{\rm tot}$	$S_{ppr} m^2/q$	ref
Samples	u	$q \max B B^{-1}$	$p/p_0=0.1$	<i>p/p</i> ₀ =0.3	<i>p/p</i> ₀ =0.9	kJ/mol	cm3g-1	OBEL III / B	101
MIL-101(Cr)	0.45	1	0.063	0.104	0.973				1
MIL-101(Cr)-NH ₂	0.42	1.05	0.06	0.14	1.04		1.6	2690	1
MIL-101(Cr)-pNH ₂	0.41	1	0.058	0.151	0.998		1.3	2495	1
MIL-101(Cr)-NO ₂	0.5	0.45	0.018	0.054	0.416		0.6	1245	1
MIL-101(Cr)-pNO ₂	0.48	0.6	0.045	0.109	0.594		1	2195	1
MIL-101(Cr)	0.44	1	0.054	0.1	0.99		1.1	2059	2
MIL-101(Cr)	0.43	1.6				75	1.7	4150±100	3
MIL-101(Cr)	0.46	1.3	0.095	0.14	1.3		1.6	3017	4
MIL-101(Cr)	0.48	1.4	0.076	0.14	1.365	70	1.58	3124	5
MIL-101(Cr)-NH ₂	0.42	0.95	0.043	0.087		65	1.27	2146	5
MIL-101(Cr)-NO ₂	0.48	0.65	0.013	0.067		40	1.19	2509	5
MIL-101(Cr)-SO ₃ H	0.28	0.95	0.12	0.371		60	0.94	11920	5
MIL-101(Cr)	0.47	0.87	0.052	0.099	0.87	78	1.22	2500	6
MIL-101(Cr)-NH ₂	0.35	0.9	0.076	0.142	0.9		0.97	2080	6
MIL-101(Cr)-NO ₂	0.45	0.7	0.037	0.081			0.95	2000	6
MIL-101(Cr)	0.45	0.4	0.087	0.14					7
MIL-101(Al)-NH ₂	0.35	0.43	0.37				1.67	3363	8
MIL-101(Al)-URPh	0.4	0.36	0.274	0.344	0.36		0.83	1555	8
MIL-100(Cr)	0.36	0.4	0.044	0.103	0.395		0.77	1330	9
grafted with EG	0.35	0.43	0.037	0.13	0.422		0.47	710	9
grafted with DEG	0.35	0.42	0.037	0.118	0.407		0.5	580	9
grafted with TEG	0.35	0.33	0.033	0.087	0.33		0.53	680	9

Table S1 Experimental and calculated water adsorption capacities obtained for the MOFs investigated.

grafted with EN	0.35	0.37	0.037	0.148	0.323		0.42	640	9
MIL-100(Cr)	0.45	1.05	0.02	0.04	1.05	82	1.59	3402	74
Li-MIL-100(Cr)	0.38	0.96	0.08	0.19	0.96		0.94	2054	74
Na-MIL-100(Cr)	0.38	0.88	0.02	0.05	0.88		0.91	2001	74
K-MIL-100(Cr)	0.4	0.76	0.02	0.08	0.76		0.72	1547	74
MIL-100(Cr)	0.42	1.22	0.1	0.2	1.22		1.32	2789	75
MIL-100(Cr)/GO-6	0.45	1.58	0.1	0.2	1.58		1.78	3522	75
MIL-100(Cr)	0.45	1.47	0.1	0.12	1.46		1.753	3460	76
MIL-100(Cr)/2%GrO	0.45	1.55	0.1	0.12	1.5		2.14	3674	76
MIL-100(Cr)(X=F)	0.3	0.8	0.093	0.317	0.794		0.93	1517	10
MIL-100(Cr)(X=Cl)	0.31	0.6	0.085	0.283		48	0.7	1522	10
MIL-100(Cr)(X=SO ₄)	0.25	0.6	0.093	0.34		48	0.7	1456	10
MIL-100(Fe)	0.35	0.79	0.087	0.258	0.783	82	0.82	1549	4
MIL-100(Fe)	0.29	0.75	0.091	0.398	0.75	92	0.85	1917	11
MIL-100(Fe)	0.38	0.87					0.92	2300±100	3
MIL-100(Al)	0.28	0.5	0.093	0.287	0.5	78	0.8	1814	11
MIL-125(Ti)	0.25	0.36	0.031	0.301	0.357		0.47	1160	6
MIL-125(Ti)-NH ₂	0.2	0.45	0.043	0.357	0.441		0.51	1230	6
MIL-125(Ti)-NH ₂	0.19	0.35	0.017	0.307	0.35	40	0.45	1220	12
MIL-125(Ti)	0.35	0.3	0.003	0.012	0.295		0.6	1510	13
MIL-125(Ti)-NH ₂	0.2	0.52	0.036	0.433	0.518		0.67	1492	13
MIL-125(Ti)-NH ₂	0.23	0.683	0.03	0.55	0.65		0.66	1509	73
MIL-91(Ti)	0.02	0.22	0.16	0.18	0.2				82
Mil-127(Fe)	0.3	0.7	0.2	0.35	0.65				82
CAU-1(Al)	0.38	0.55	0.015	0.026	0.387		0.64	1530	14
CAU-1(Al)-NHCH ₃	0.48	0.4	0.026	0.068	0.522		0.53	1340	14

CAU-1(Al)-NHCOCH ₃	0.26	0.25	0.045	0.12	0.252		0.3	680	14
UiO-66(Zr)	0.33	0.36	0.051	0.159	0.348	45	0.41	1030	6
UiO-66(Zr)-NH ₂	0.15	0.36	0.139	0.267	0.36	89.2	0.35	830	6
UiO-66(Zr)	0.25	0.45	0.075	0.293	0.443		0.52	1160	15
UiO-66(Zr)-NH ₂	0.16	0.36	0.132	0.292	0.351		0.57	1040	15
UiO-66(Zr)	0.25	0.5	0.047	0.163	0.494	20	0.77	1032	12
UiO-66(Zr)-NH ₂	0.15	0.45	0.036	0.104	0.323	38	0.7	1328	12
UiO-67(Zr)	0.6	0.18	0.014	0.025	0.169	10	0.97	2064	12
UiO-67(Zr)	0.5	0.29	0.024	0.042	0.29			2145	16
UiO-66(Zr)-BIPY	0.2	0.23	0.059	0.16	0.23			2385	16
UiO-66(Zr)	0.34	0.43	0.016	0.1	0.528		0.49	1290	17
UiO-66(Zr)	0.35	0.37	0.025	0.121	0.404		0.52		18
UiO-66(Zr)-CH ₃	0.29	0.31	0.024	0.18	0.309		0.51	1065	18
UiO-66(Zr)-(CH ₃) ₂	0.43	0.23	0.008	0.104	0.224		0.4	811	19
UiO-66(Zr)	0.26	0.45	0.019	0.33	0.446		0.55	1120 1089	20
UiO-66(Zr)-NH ₂	0.16	0.34	0.137	0.325	0.339		0.52	1187 1059	20
UiO-66(Zr)-1,4-naphthyl	0.25	0.26	0.024	0.141	0.26		0.4	766 747	20
UiO-66(Zr)-NO2	0.18	0.37	0.082	0.323	0.37		0.42	765 819	20
UiO-66(Zr)-2,5-(OMe) ₂	0.2	0.42	0.103	0.352	0.42		0.38	899 837	20
UiO-66(Zr)-(COOH) ₂	0.15	0.27	0.036	0.099	0.201		0.21	415	21
MOF-801(Zr)	0.09	0.36	0.224	0.304	0.36	49.33	0.45	990	17
MOF-802(Zr)	0.4	0.09	0.028	0.056	0.088		< 0.01	<20	17
MOF-804(Zr)	0.4	0.23	0.128	0.188	0.23		0.46	1145	17
MOF-805(Zr)	0.31	0.33	0.02	0.128	0.33		0.48	1230	17

MOF-806(Zr)	0.1	0.34	0.024	0.048	0.34		0.85	2220	17
MOF-808(Zr)	0.3	0.59	0.044	0.128	0.588		0.84	2060	17
MOF-841(Zr)	0.22	0.51	0.008	0.44	0.51	45.67	0.53	1390	17
PIZOF-2(Zr)	0.75	0.68	0.003	0.006	0.68		0.67	2080	17
DUT-67(Zr)	0.22	0.5	0.08	0.312	0.5		0.6	1560	17
DUT-51(Zr)	0.63	0.55	0.015	0.031			1.08		22
DUT-52(Zr)	0.35	0.24	0.003	0.035	0.237		0.54	1399	23
DUT-84(Zr)	0.38	0.12	0.004	0.032	0.119		0.27	637	23
DUT-53(Hf)	0.38	0.22	0.004	0.028	0.22		0.31	782	23
DUT-67(Zr)	0.35	0.41	0.034	0.108	0.29		0.44	1767	24
DUT-67(Hf)	0.35	0.29	0.034	0.108	0.29		0.33	1221	24
DUT-68(Zr)	0.4	0.34	0.041	0.112	0.278		0.41	1786	24
DUT-68(Hf)	0.38	0.29	0.041	0.112	0.278		0.34	1299	24
DUT-69(Zr)	0.3	0.26	0.049	0.106	0.185		0.31	1110	24
DUT-69(Hf)	0.28	0.2	0.049	0.106	0.185		0.22	843	24
NU-1000(Zr)	0.75	1					1.4	2320	25
MIP-200(Zr)	0.18	0.45	0.125	0.39	0.45		0.4	1000	79
MIL-163(Zr)	0.55	0.648	0.05	0.108	0.576			90-170	81
MIL-53(Cr)	0.15	0.1	0.009	0.067	0.103			1626	26
MIL-53(Al)	0.09	0.14	0.009	0.074	0.095		0.51	1040	6
MIL-53(Al)-NH ₂	0.08	0.04					0.37	940	6
MIL-53(Ga)	0.05	0.02					0.47	1230	6
MIL-53(Ga)-NH ₂		0.02						210	6
MIL-53(Al)	0.3	0.09							27
MIL-53(Fe)-(COOH) ₂	0.05	0.16							27
MIL-53(Al)-OH	0.75	0.4							27

MIL-53(Al)-(OH) _{0.68} (NH2) _{0.32}	0.8	0.36							28
MIL-53(Al)-(OH) _{0.53} (NH2) _{0.47}	0.88	0.23							28
MIL-53(Al)-(OH) _{0.34} (NH2) _{0.66}	0.02	0.11							28
MIL-53(Al)-Cl	0.18	0.14	0.028	0.085	0.14		0.32		29
MIL-53(Al)-Br	0.5	0.11	0.017	0.052	0.11		0.14		29
MIL-53(Al)-CH ₃	0.25	0.11	0.018	0.056	0.108		0.32		29
MIL-53(Al)-NO ₂	0.1	0.12	0.056	0.07	0.12		0.34		29
MIL-53(Al)-(OH) ₂	0.65	0.42	0.102	0.128	0.42		0.07		29
MIL-53(Al)-F	0.8	0.07	0.027	0.031	0.059		0.48	1137	30
MIL-53(Al)-F ₂	0.7	0.23	0.001	0.004	0.202		0.16	467	31
MIL-47(V)-F	0.6	0.18	0.07	0.164	0.179		0.36	1078	30
MIL-47(V)-F ₂	0.7	0.18	0.003	0.008	0.179		0.34	987	31
MIL-53(Al)-NH ₂	0.02	0.09							27
MIL-53(Al)ionothermal	0.15	0.08	0.002	0.01	0.076		0.36	1031	32
MIL-53(Al)-SO ₃ H	0.45	0.45							33
Al(OH)-(1,4-NDC)	0.45	0.16	0.008	0.024	0.153		0.22	546	34
DUT-4(Al)	0.65	0.52	0.005	0.014	0.431		0.79	1360	4
MIL-68(In)	0.58	0.32	0.004	0.004	0.3		0.42	1100	6
MIL-68(In)-NH ₂	0.44	0.32	0.009	0.021	0.32		0.3	850	6
MIL-160(Al)	0.08	0.356	0.25	0.35	0.355	65	0.398	1070	80
CAU-10(Al)-H	0.18	0.35	0.007	0.292	0.347	50	0.27	525	35
CAU-10(Al)-H	0.18	0.38	0.007	0.31	0.371		0.28	635	36
CAU-10(Al)-CH ₃	0.45	0.18	0.014	0.026	0.18				36
CAU-10(Al)-OCH ₃	0.25	0.08	0.002	0.074					36
CAU-10(Al)-NO ₂	0.32	0.17	0.001	0.05			0.21	440	36
CAU-10(Al)-NH ₂	0.16	0.23	0.093	0.192					36

CAU-10(Al)-OH	0.16	0.3	0.042	0.235	0.3				36
CAU-13(Al)	0.22	0.16	0.01	0.102	0.143		0.15	380 450	37
Al-fumarate	0.27	0.45	0.027	0.106	0.353		0.48	1021	38
CAU-23(Al)	0.28	0.425	0.03	0.375	0.4			1250	78
Li-rho-ZMOF	0.01	0.342	0.207	0.342		159*			77
Na-rho-ZMOF	0.01	0.324	0.185	0.324		130*			77
Cs-rho-ZMOF	0.01	0.261	0.144	0.261		105*			77
MOF-74(Mg)	0.02	0.63	0.534	0.576	0.625	76	0.65	1400	15
MOF-74(Mg)	0.05	0.6	0.55	0.605	0.75		0.53	1250	17
MOF-74(Ni)	0.05	0.51	0.505	0.565	0.63		0.49	1040	17
MOF-74(Co)	0.05	0.49	0.49	0.545	0.615		0.46	1130	17
MOF-74(Ni)	0.02	0.54	0.024	0.025	0.026				39
ZIF-8(Zn)						10	0.49		40
SIM-1(Zn)	0.27	0.14	0.017	0.073	0.129		0.3	570	6
MAF-4(ZIF-8)			0.003	0.005	0.009		0.65	1870	40
MAF-47-0.76	0.85	0.4	0.002	0.006	0.293		0.64		40
MAF-47-0.49	0.62	0.43	0.002	0.007	0.427		0.65		40
MAF-47-0.23	0.37	0.43	0.004	0.009	0.43		0.64		40
MAF-7(Zn)	0.27	0.43	0.006	0.102	0.43		0.65	1870	40
ZIF-71(Zn)			0.001	0.002	0.004		0.39		41
ZIF-90(Zn)	0.35	0.32	0.003	0.011	0.33		0.49		41
ZIF-93(Zn)	0.5	0.41	0.02	0.07	0.4				82
CoNIm	0.55	0.16	0.008	0.074	0.153			1858	42
DMOF(Zn)	0.3	0.09	0.002	0.061	0.047		0.75	1960	15
DMOF(Zn)-NH ₂	0.3	0.08	0.022	0.049			0.58	2010	15
DMOF(Zn)-Br	0.45	0.05	0.013	0.031	0.05		0.53	1315	43

DMOF(Zn)-Cl ₂	0.35	0.07	0.003	0.01	0.07		0.45	1175	43
DMOF(Zn)-OH	0.3	0.11	0.021	0.051	0.097		0.54	1130	43
DMOF(Zn)-NO ₂	0.4	0.14	0.034	0.039	0.133		0.53	1310	43
DMOF(Zn)-N			0.002	0.01	0.019		0.57	1420	43
DMOF(Zn)-A	0.3	0.27	0.003	0.137	0.27		0.33	760	43
DMOF-TM1(Zn) (mixed linker)	0.44	0.27	0.007	0.044	0.271		0.53	1980	43
DMOF-TM2(Zn)	0.26	0.43	0.002	0.003	0.374		0.51	1050	44
DMOF-TM(Co)	0.35	0.4					0.49	1738	45
DMOF-TM(Ni)	0.45	0.4					0.48	1434	45
DMOF-TM(Cu)	0.55	0.42					0.46	1471	45
Cd(BTTB) _n	0.5	0.27	0.036	0.075	0.252		0.19	415	46
Zn(BTTB)n	0.7	0.22	0.019	0.044	0.201		0.25	447	46
Zn(BTTB) (BDC) _n	0.5	0.09	0.018	0.037	0.087		0.21	441	46
Ni(BTTB)n	0.8	0.02	0.007	0.008	0.019		0.2	391	46
Co(BTTB) (BPY)	0.3	0.01	0.001	0.007	0.009		0.4	843	46
Zn(BTTB) (BPY)	0.7	0.27	0.013	0.034	0.252		0.38	841	46
Co(BTTB) (AZPY)	0.55	0.25	0.012	0.102	0.22		0.39	805	46
Zn(BTTB) (AZPY)	0.55	0.2	0.019	0.133	0.193		0.36	647	46
Co(BTTB) (DMBPY)	0.85	0.2					0.29		45
Zn(BTTB) (DMBPY)	0.85	0.22					0.27		45
Cu2(pzdc) ₂ pyz	0.1	0.12	0.061	0.079					47
Cu2(pzdc) ₂ bpy	0.09	0.17	0.119	0.148	0.167				47
Cu2(pzdc) ₂ bpe	0.08	0.29	0.173	0.227					47
CuBTC	0.1	0.5	0.013	0.024	0.033	10	0.62	6010	15,48
CuMBTC	0.3	0.18	0.072	0.09	0.162		0.5	1471	48
CuEBTC	0.15	0.18	0.09	0.126	0.162		0.46	1434	48

Cu-BTC	0.15	0.54		0.283			1635	49
Cu-BTC	0.1	0.5	0.218	0.443	0.5	0.72	1340	4
Cu-BTC	0.5	0.72	0.234	0.27	0.702			39
Cu2(dmcapz) ₂	0.33	0.22				0.23	539	50
Cu2(pmpmd) ₂ (CH ₃ OH) ₄ (opd) ₂	0.15	0.2						51
CAU-14(Cu)	0.2	0.297	0.054	0.234	0.27	0.27	647	83
Zn-trimesate	0.1	0.2						52
Zn2(bptc)	0.18	0.16						53
MFU-4(Zn)	0.25	0.55	0.122	0.302	0.54		1611	54
ThrZnOAc	0.25	0.15	0.009	0.065	0.14			55
AlaZnOAc	0.88	0.25	0.002	0.105	0.234			55
AlaZnCl	0.25	0.16	0.019	0.071	0.16			56
AlaZnBr	0.6	0.14	0.006	0.013				56
ValZnOAc	0.78	0.25			0.243			55
ValZnCl	0.45	0.07	0.011	0.02				56
$(H_2dab)[Zn_2(ox)_3]$	0.7	0.23						57
Zn(NDI-H)	0.45	0.45		0.023	0.42	0.65	1236	58
Zn(NDI-SEt)	0.41	0.25		0.042	0.243	0.39	1236	58
Zn(NDI-SOEt)	0.26	0.3	0.043	0.161	0.291	0.38	888	58
Zn(NDI-SO ₂ Et)	0.35	0.25	0.028	0.075	0.243	0.31	888	58
Zn4O(dmcapz) ₃	0.85	0.45	0.008	0.016	0.324	0.43	840	59
Zn4O(bfbpdc) ₃ (bpy) _{0.5}	0.92	0.5	0.001	0.002	0.184	0.59	1450	60
Zn2(bptc)	0.18	0.16	0.018	0.107	0.153		312.7	53
CAU-3(Al)	0.63	0.51	0.026	0.038	0.51	0.64	1550	61
CAU-3(Al)-NH ₂	0.67	0.5	0.05	0.086	0.5	0.53	1250	61
CAU-6(Al)	0.09	0.4	0.238	0.288	0.378	0.25	620	62

CALF-25(Ba)	0.6	0.09					385	63
ISE-1(Ni)	0.15	0.18				0.51		64
JUC-110(Cd)	0.2	0.11	0.003	0.032	0.107			65
NOTT-400	0.35	0.449	0.02	0.05	0.43		1356	87
NOTT-401	0.38	0.112	0.018	0.032	0.102		1504	88
Ni8(L1)6	0.9	0.45				0.52	205	66
Ni8(L2)6	0.8	0.63				0.52	990	66
Ni8(L3)6	0.4	0.99				1.21	1770	66
Ni8(L4)6	0.45	0.9				0.97	1920	66
Ni8(L5)6	0.7	1.12	0.02	0.043	1.004	1.25	2215	66
Ni8(L5-(CH ₃) ₂) ₆	0.72	0.7	0.02	0.039	0.621		1985	66
Ni8(L5-(CF ₃) ₂) ₆	0.85	0.86	0.014	0.031	0.781		2195	66
$([Ni(L6)_2] \cdot 4H_2O)n$	0.11	0.12	0.029	0.105	0.117		321	67
[Cd(L'1) (Cl)](H ₂ O) _{1a}	0.9	0.38	0.003	0.01	0.394			68
$[Cd(L'2)(Cl)](H_2O)_{2a}$	0.1	0.09	0.042	0.083	0.093			68
$[Cd2(L'2)_2(Br)_2](H_2O)_{32b}$	0.5	0.04	0.007	0.014	0.034			68
$[Cd(L'3)(Cl)](H_2O)_{23a}$	0.15	0.11		0.094	0.109			68
[Cd(L7) (DMF)]	0.1	0.15	0.063	0.101	0.143		224.4	69
[Co(DPE)]·0.5DPE	0.45	0.2	0.012	0.021	0.17	0.14	310	70
[Dy(ox) (Bpybc)(H ₂ O)]	0.6	0.25						71
$[PbL2] \cdot 2DMF \cdot 6H_2O$	0.8	0.24	0.022	0.042	0.174			72
$[Cd_2(sdb)_2(pcih)_2] \cdot 2DMF \cdot H_2O$	0.23	0.185	0.008	0.148	0.185	0.22	120	84
$[Co4L3(\mu 3-OH)(H_2O)_3](SO_4)0.5 \cdot xH_2O$	0.08	0.189	0.147	0.172	0.185			85
[La3L4(H2O)6]-Cl·xH ₂ O	0.21	0.271	0.09	0.246	0.27			86

 q_{max} (maximum water adsorption capacity), α (relative pressure for which capacity is 50% of q_{max}), Vtot (total pore volume), Qa (heats of adsorption at zero adsorption), S_{BET} (BET surface area)

Figure S1 Partial charges for each atoms of UiO-66(Zr) and rho-ZMOF

Elements	σ (Å)	ε/k _B (K)
Zr	2.783	34.724
In	3.976	301.417
Na+	2.658	15.096
С	3.473	47.859
0	3.033	48.161
Н	2.846	7.649
Ν	3.263	38.951
OW(for Na-rho-ZMOF)	3.1506	76.54
OW(for UiO-66(Zr))	3.154	78.02
HW	0	0

Table S2. LJ potential parameters for the atoms of the H₂O, UiO-66(Zr) and Na-rho-ZMOF

Synthesis and activation methods

Materials

All materials were purchased from Shanghai Macklin Biochemical Co., Ltd and used directly without further purification.

Synthesis of MOAAF-1(Zn)

1,3,5-benzenetricarboxylic acid (H₃btc 0.30 g, 1.4 mmol) was dissolved in DMF (10 mL) in a 20 mL glass vial. Then, Triethanolamine (TEOA, 1.16 g, 7.8 mmol) and solid ZnCl₂ (0.3 g, 2.2 mmol) were added to the reaction mixture, and the resulting solution was sealed and heated at 100 °C for 24h. After cooling to room temperature, the resultant crystals were formed.

Synthesis of MOF-107(Cu)

2,5-thiophenedicarboxylic acid, (TDCH₂) (18.0 mg, 0.010 mmol), and Cu(NO₃)₂·2.5H₂O, (23.5 mg, 0.010 mmol) was dissolved in N,N'-diethylformamide (DEF)/ethanol (1.6 ml/0.4 ml). The solution was placed in a Teflon-lined stainless-steel autoclave. The reactor was sealed and heated to 80°C for 20 h at a rate of 2.0°C/min, then cooled to room temperature at a rate of 1.0° C/min. The resultant blue crystals were filtered.

Synthesis of Zn(BTCPyrol)

The mixture of $Zn(OAc)_2 \cdot 2H_2O$ (0.1467 g, 0.6 mmol), 1,3,5-benzenetricarboxylic acid (H3btc, 0.0803 g, 0.4 mmol) and 1.5 mL 2-pyrrolidinone (pyrol) was sealed and heated to 100°C for 5 days. After cooling to room temperature, colorless crystals were obtained.

Synthesis of Zn(NH₂BDC)

A mixture of $Zn(NO_3)_2 \cdot 6 H_2O$ (0.0595 g, 0.2 mmol) and H_2NH_2BDC (0.0362 g, 0.2 mmol) was dissolved in DMF/H₂O (10 ml, 2:1), then Triethylamine (Et₃N 0.05 ml) was added. The mixture was stirred for 2 h in air and then filtrated. The yellow filtrate was kept at room temperature for two weeks, yellow block crystals were obtained.

Activation of the samples

All samples were filtrated first, and washed three times by DMF. Then, the samples were put into the DMF solution and heated to 80°C. The mixture was stirred for 4 h, followed by washing three times with methanol. The obtained materials were soaked in methanol for 5 days at room temperature. The filtrated samples were dried at 80°C overnight under vacuum, and then calcination at 180°C for 24 h.

Characterization

The X-ray diffraction (XRD) patterns were recorded at room temperature under ambient conditions with a BRUKER instrument (D8 Focus, Cu K α with k = 1.5418 Å). The morphologies of samples were also characterized by scanning electron microscopy (SEM) on a Hitachi S4800. Specific surface area and pore volume of composites were obtained by nitrogen gas adsorption at a low temperature of about 77 K using a gas adsorption analyzer (Quantachrome Quadrasorb SI-MP). Water sorption analysis was performed by a 3H-2000PW gravimetric analyzer (Beishide Instrument Technology Co., Ltd.). Water sorption isotherms were performed at 25°C in the relative-pressure range from 0 to 0.9. Prior to measurements, the samples were degassed at 150°C to a constant weight.

Figure S2 XDR pattern of MOAAF-1

Figure S3 XDR pattern of Zn(NH₂BDC)

Figure S4 XDR pattern of Zn(BTCpyrol)

Figure S5 XDR pattern of MOF-107(Cu)

Figure S6. SEM of MOAAF-1(a), Zn(BTCPyrol)(b); MOF-107(c); and Zn(NH₂BDC)

References

- Khutia, A.; Rammelberg, H. U.; Schmidt, T.; Henninger, S.; Janiak, C. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application. Chem. Mater. 2013, 25, 790-798.
- 2. Ehrenmann, J.; Henninger, S. K.; Janiak, C. Water Adsorption Characteristics of MIL-101 for Heat-Transformation Applications of MOFs. Eur. J. Inorg. Chem. 2011, 2011, 471-474.
- Seo, Y. K.; Yoon, J. W.; Lee, J. S.; Hwang, Y. K.; Jun, C. H.; Chang, J. S.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M. Energy-Efficient Dehumidification over Hierachically Porous Metal-Organic Frameworks as Advanced Water Adsorbents. Adv. Mater. 2012, 24, 806-810.
- Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of metal-organic frameworks by water adsorption. Microporous Mesoporous Mater. 2009, 120, 325-330.
- Akiyama, G.; Matsuda, R.; Sato, H.; Hori, A.; Takata, M.; Kitagawa, S. Effect of functional groups in MIL-101 on water sorption behavior. Microporous Mesoporous Mater. 2012, 157, 89-93.
- Canivet, J.; Bonnefoy, J.; Daniel, C.; Legrand, A.; Coasne, B.; Farrusseng, D. Structureproperty relationships of water adsorption in metal-organic frameworks. New J. Chem. 2014, 38, 3102.
- Aristov, Y. I. Challenging offers of material science for adsorption heat transformation: A review. Appl. Therm. Eng. 2013, 50, 1610-1618.
- Wittmann, T.; Siegel, R.; Reimer, N.; Milius, W.; Stock, N.; Senker, J. Enhancing the Water Stability of Al-MIL-101-NH2 via Postsynthetic Modification. Chem. - Eur. J. 2015, 21, 314-323.
- 9. Wickenheisser, M.; Jeremias, F.; Henninger, S. K.; Janiak, C. Grafting of hydrophilic ethylene glycols or ethylenediamine on coordinatively unsaturated metal sites in MIL-100(Cr) for improved water adsorption characteristics. Inorg. Chim. Acta 2013, 407, 145-152.
- Akiyama, G.; Matsuda, R.; Kitagawa, S. Highly Porous and Stable Coordination Polymers as Water Sorption Materials. Chem. Lett. 2010, 39, 360-361.
- Jeremias, F.; Khutia, A.; Henninger, S. K.; Janiak, C. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes - A promising application. J. Mater. Chem. 2012, 22, 10148-10151.
- Jeremias, F.; Lozan, V.; Henninger, S. K.; Janiak, C. Programming MOFs for water sorption: Amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Trans. 2013, 42, 15967-15973.
- Kim, S.-N.; Kim, J.; Kim, H.-Y.; Cho, H.-Y.; Ahn, W.-S. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Catal. Today 2013, 204, 85-93.
- Ahnfeldt, T.; Gunzelmann, D.; Wack, J.; Senker, J.; Stock, N. Controlled modification of the inorganic and organic bricks in an Al-based MOF by direct and post-synthetic synthesis routes. CrystEngComm 2012, 14, 4126-4136.
- Schoenecker, P. M.; Carson, C. G.; Jasuja, H.; Flemming, C. J. J.; Walton, K. S. Effect of Water Adsorption on Retention of Structure and Surface Area of Metal-Organic Frameworks. Ind. Eng. Chem. Res. 2012, 51, 6513-6519.
- 16. DeCoste, J. B.; Peterson, G. W.; Jasuja, H.; Glover, T. G.; Huang, Y.-g.; Walton, K. S. Stability and degradation mechanisms of metal-organic frameworks containing the

Zr6O4(OH)4 secondary building unit. J. Mater. Chem. A 2013, 1, 5642-5650.

- Furukawa, H.; Gandara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369-4381.
- Jasuja, H.; Zang, J.; Sholl, D. S.; Walton, K. S. Rational tuning of water vapor and CO2 adsorption in highly stable Zr-based MOFs. J. Phys. Chem. C 2012, 116, 23526-23532.
- 19. Jasuja, H.; Walton, K. S. Experimental Study of CO2, CH4, and Water Vapor Adsorption on a Dimethyl-Functionalized UiO-66 Framework. J. Phys. Chem. C 2013, 117, 7062-7068.
- Cmarik, G. E.; Kim, M.; Cohen, S. M.; Walton, K. S. Tuning the Adsorption Properties of UiO-66 via Ligand Functionalization. Langmuir 2012, 28, 15606-15613.
- Yang, Q.; Vaesen, S.; Ragon, F.; Wiersum, A. D.; Wu, D.; Lago, A.; Devic, T.; Martineau, C.; Taulelle, F.; Llewellyn, P. L.; Jobic, H.; Zhong, C.; Serre, C.; De Weireld, G.; Maurin, G. A Water Stable Metal-Organic Framework with Optimal Features for CO2 Capture. Angew. Chem., Int. Ed. 2013, 52, 10316-10320.
- 22. Bon, V.; Senkovskyy, V.; Senkovska, I.; Kaskel, S. Zr(iv) and Hf(iv) based metal-organic frameworks with reo-topology. Chem. Commun. 2012, 48, 8407-8409.
- 23. Bon, V.; Senkovska, I.; Weiss, M. S.; Kaskel, S. Tailoring of network dimensionality and porosity adjustment in Zr- and Hf-based MOFs. CrystEngComm 2013, 15, 9572-9577.
- 24. Bon, V.; Senkovska, I.; Baburin, I. A.; Kaskel, S. Zr-and Hf-Based Metal-Organic Frameworks: Tracking Down the Poly-morphism. Cryst. Growth Des. 2013, 13, 1231-1237.
- Deria, P.; Mondloch, J. E.; Tylianakis, E.; Ghosh, P.; Bury, W.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. Perfluoroalkane Functionalization of NU-1000 via Solvent-Assisted Ligand Incorporation: Synthesis and CO2 Adsorption Studies. J. Am. Chem. Soc. 2013, 135, 16801-16804.
- Bourrelly, S.; Moulin, B. a.; Rivera, A.; Maurin, G.; Devautour-Vinot, S.; Serre, C.; Devic, T.; Horcajada, P.; Vimont, A.; Clet, G.; Daturi, M.; Lavalley, J.-C.; Loera-Serna, S.; Denoyel, R.; Llewellyn, P. L.; Férey, G. r. Explanation of the Adsorption of Polar Vapors in the Highly Flexible Metal Organic Framework MIL-53(Cr). J. Am. Chem. Soc. 2010, 132, 9488-9498.
- Shigematsu, A.; Yamada, T.; Kitagawa, H. Wide Control of Proton Conductivity in Porous Coordination Polymers. J. Am. Chem. Soc. 2011, 133, 2034-2036.
- Yamada, T.; Shirai, Y.; Kitagawa, H. Synthesis, Water Adsorption, and Proton Conductivity of Solid-Solution-Type Metal-Organic Frameworks Al(OH) (bdc-OH)x(bdc-NH2)1-x. Chem. -Asian J. 2014, 9, 1316-1320.
- Biswas, S.; Ahnfeldt, T.; Stock, N. New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior. Inorg. Chem. 2011, 50, 9518-9526.
- Biswas, S.; Rémy, T.; Couck, S.; Denysenko, D.; Rampelberg, G.; Denayer, J. F.; Volkmer, D.; Detavernier, C.; Van Der Voort, P. Partially fluorinated MIL-47 and Al-MIL-53 frameworks: influence of functionalization on sorption and breathing properties. Phys. Chem. Chem. Phys. 2013, 15, 3552-3561.
- Biswas, S.; Couck, S.; Denysenko, D.; Bhunia, A.; Grzywa, M.; Denayer, J. F. M.; Volkmer, D.; Janiak, C.; Van Der Voort, P. Sorption and breathing properties of difluorinated MIL-47 and Al-MIL-53 frameworks. Microporous Mesoporous Mater. 2013, 181, 175-181.
- 32. Liu, J.; Zhang, F.; Zou, X.; Yu, G.; Zhao, N.; Fan, S.; Zhu, G. Environmentally friendly

synthesis of highly hydrophobic and stable MIL-53 MOF nanomaterials. Chem. Commun. 2013, 49, 7430-7432.

- Goesten, M. G.; Juan-Alcañiz, J.; Ramos-Fernandez, E. V.; Sai Sankar Gupta, K. B.; Stavitski, E.; van Bekkum, H.; Gascon, J.; Kapteijn, F. Sulfation of metal-organic frameworks: Opportunities for acid catalysis and proton conductivity. J. Catal. 2011, 281, 177-187.
- Comotti, A.; Bracco, S.; Sozzani, P.; Horike, S.; Matsuda, R.; Chen, J.; Takata, M.; Kubota, Y.; Kitagawa, S. Nanochannels of Two Distinct Cross-Sections in a Porous Al-Based Coordination Polymer. J. Am. Chem. Soc. 2008, 130, 13664-13672.
- 35. Frohlich, D.; Henninger, S. K.; Janiak, C. Multicycle water vapour stability of microporous breathing MOF aluminium isophthalate CAU-10-H. Dalton Trans. 2014, 43, 15300-15304.
- Reinsch, H.; van der Veen, M. A.; Gil, B.; Marszalek, B.; Verbiest, T.; de Vos, D.; Stock, N. Structures, Sorption Characteristics, and Nonlinear Optical Properties of a New Series of Highly Stable Aluminum MOFs. Chem. Mater. 2013, 25, 17-26.
- Niekiel, F.; Lannoeye, J.; Reinsch, H.; Munn, A. S.; Heerwig, A.; Zizak, I.; Kaskel, S.; Walton, R. I.; de Vos, D.; Llewellyn, P.; Lieb, A.; Maurin, G.; Stock, N. Conformation-Controlled Sorption Properties and Breathing of the Aliphatic Al-MOF [Al(OH) (CDC)]. Inorg. Chem. 2014, 53, 4610-4620.
- Jeremias, F.; Frohlich, D.; Janiak, C.; Henninger, S. K. Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF. RSC Adv. 2014, 4, 24073-24082.
- Liu, J.; Wang, Y.; Benin, A. I.; Jakubczak, P.; Willis, R. R.; LeVan, M. D. CO2/H2O Adsorption Equilibrium and Rates on Metal-Organic Frameworks: HKUST-1 and Ni/DOBDC. Langmuir 2010, 26, 14301-14307.
- 40. Zhang, J.-P.; Zhu, A.-X.; Lin, R.-B.; Qi, X.-L.; Chen, X.-M. Pore Surface Tailored SOD-Type Metal-Organic Zeolites. Adv. Mater. 2011, 23, 1268-1271.
- Zhang, K.; Lively, R. P.; Dose, M. E.; Brown, A. J.; Zhang, C.; Chung, J.; Nair, S.; Koros, W. J.; Chance, R. R. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem. Commun. 2013, 49, 3245-3247.
- 42. Biswal, B. P.; Panda, T.; Banerjee, R. Solution mediated phase transformation (RHO to SOD) in porous Co-imidazolate based zeolitic frameworks with high water stability. Chem. Commun. 2012, 48, 11868-11870.
- 43. Jasuja, H.; Huang, Y.-g.; Walton, K. S. Adjusting the Stability of Metal-Organic Frameworks under Humid Conditions by Ligand Functionalization. Langmuir 2012, 28, 16874-16880.
- Jasuja, H.; Burtch, N. C.; Huang, Y.-g.; Cai, Y.; Walton, K. S. Kinetic Water Stability of an Isostructural Family of Zinc-Based Pillared Metal-Organic Frameworks. Langmuir 2013, 29, 633-642.
- Jasuja, H.; Jiao, Y.; Burtch, N. C.; Huang, Y.-g.; Walton, K. S. Synthesis of Cobalt, Nickel, Copper, and Zinc-based Water Stable Pillared Metal-Organic Frameworks. Langmuir 2014, 30, 14300-14307.
- 46. Karra, J. R.; Jasuja, H.; Huang, Y.-G.; Walton, K. Structural Stability of BTTB-based Metal-Organic Frameworks under Humid Conditions. J. Mater. Chem. A 2015, 3, 1624.
- 47. Kondo, A.; Daimaru, T.; Noguchi, H.; Ohba, T.; Kaneko, K.; Kanoh, H. Adsorption of water on three-dimensional pillared-layer metal organic frameworks. J. Colloid Interface Sci. 2007,

314, 422-426.

- Cai, Y.; Zhang, Y.; Huang, Y.; Marder, S. R.; Walton, K. S. Impact of Alkyl-Functionalized BTC on Properties of Copper-Based Metal-Organic Frameworks. Cryst. Growth Des. 2012, 12, 3709-3713.
- Van Assche, T. R. C.; Duerinck, T.; Gutiérrez Sevillano, J. J.; Calero, S.; Baron, G. V.; Denayer, J. F. M. High Adsorption Capacities and Two-Step Adsorption of Polar Adsorbates on Copper-Benzene-1,3,5-tricarboxylate Metal-Organic Framework. J. Phys. Chem. C 2013, 117, 18100-18111.
- Quartapelle Procopio, E.; Fukushima, T.; Barea, E.; Navarro, J. A. R.; Horike, S.; Kitagawa, S. A Soft Copper(II) Porous Coordination Polymer with Unprecedented Aqua Bridge and Selective Adsorption Properties. Chem. - Eur. J. 2012, 18, 13117-13125.
- Li, G.-B.; Li, L.; Liu, J.-M.; Yang, T.; Su, C.-Y. A CdSO4-Type 3D Metal-Organic Framework Showing Coordination Dynamics on Cu2+ Axial Sites: Vapochromic Response and Guest Sorption Selectivity. Cryst. Growth Des. 2013, 13, 1518-1525.
- 52. Birsa Čelič, T.; Mazaj, M.; Guillou, N.; Elkaïm, E.; El Roz, M.; Thibault-Starzyk, F.; Mali, G.; Rangus, M.; Čendak, T.; Kaučič, V.; Zabukovec Logar, N. Study of Hydrothermal Stability and Water Sorption Characteristics of 3-Dimensional Zn-Based Trimesate. J. Phys. Chem. C 2013, 117, 14608-14617.
- Lin, X.; Blake, A. J.; Wilson, C.; Sun, X. Z.; Champness, N. R.; George, M. W.; Hubberstey, P.; Mokaya, R.; Schröder, M. A Porous Framework Polymer Based on a Zinc(II) 4,4'-Bipyridine-2,6,2', 6'-tetracarboxylate: Synthesis, Structure, and "Zeolite-Like" Behaviors. J. Am. Chem. Soc. 2006, 128, 10745-10753.
- Biswas, S.; Grzywa, M.; Nayek, H. P.; Dehnen, S.; Senkovska, I.; Kaskel, S.; Volkmer, D. A cubic coordination framework constructed from benzobistriazolate ligands and zinc ions having selective gas sorption properties. Dalton Trans. 2009, 6487-6495.
- 55. Kundu, T.; Sahoo, S. C.; Banerjee, R. Relating pore hydrophilicity with vapour adsorption capacity in a series of amino acid based metal organic frameworks. CrystEngComm 2013, 15, 9634-9640.
- Kundu, T.; Sahoo, S. C.; Saha, S.; Banerjee, R. Salt metathesis in three dimensional metalorganic frameworks (MOFs) with unprecedented hydrolytic regenerability. Chem. Commun. 2013, 49, 5262-5264.
- Sadakiyo, M.; Yamada, T.; Kitagawa, H. Hydroxyl Group Recognition by Hydrogen-Bonding Donor and Acceptor Sites Embedded in a Layered Metal-Organic Framework. J. Am. Chem. Soc. 2011, 133, 11050-11053.
- Wade, C. R.; Corrales-Sanchez, T.; Narayan, T. C.; Dincă, M. Postsynthetic tuning of hydrophilicity in pyrazolate MOFs to modulate water adsorption properties. Energy Environ. Sci. 2013, 6, 2172-2177.
- Montoro, C.; Linares, F.; Quartapelle Procopio, E.; Senkovska, I.; Kaskel, S.; Galli, S.; Masciocchi, N.; Barea, E.; Navarro, J. A. R. Capture of Nerve Agents and Mustard Gas Analogues by Hydrophobic Robust MOF-5 Type Metal-Organic Frameworks. J. Am. Chem. Soc. 2011, 133, 11888-11891.
- Santra, A.; Senkovska, I.; Kaskel, S.; Bharadwaj, P. K. Gas Storage in a Partially Fluorinated Highly Stable Three-Dimensional Porous Metal-Organic Framework. Inorg. Chem. 2013, 52, 7358-7366.

- Reinsch, H.; Feyand, M.; Ahnfeldt, T.; Stock, N. CAU-3: A new family of porous MOFs with a novel Al-based brick: [Al2(OCH3)4(O2C-X-CO2)] (X = aryl). Dalton Trans. 2012, 41, 4164-4171.
- 62. Reinsch, H.; Marszalek, B.; Wack, J.; Senker, J.; Gil, B.; Stock, N. A new Al-MOF based on a unique column-shaped inorganic building unit exhibiting strongly hydrophilic sorption behaviour. Chem. Commun. 2012, 48, 9486-9488.
- Taylor, J. M.; Vaidhyanathan, R.; Iremonger, S. S.; Shimizu, G. K. H. Enhancing Water Stability of Metal-Organic Frameworks via Phosphonate Monoester Linkers. J. Am. Chem. Soc. 2012, 134, 14338-14340.
- 64. Henninger, S. K.; Habib, H. A.; Janiak, C. MOFs as Adsorbents for Low Temperature Heating and Cooling Applications. J. Am. Chem. Soc. 2009, 131, 2776-2777.
- 65. Borjigin, T.; Sun, F.; Zhang, J.; Cai, K.; Ren, H.; Zhu, G. A microporous metal-organic framework with high stability for GC separation of alcohols from water. Chem. Commun. 2012, 48, 7613-7615.
- 66. Padial, N. M.; Quartapelle Procopio, E.; Montoro, C.; López, E.; Oltra, J. E.; Colombo, V.; Maspero, A.; Masciocchi, N.; Galli, S.; Senkovska, I.; Kaskel, S.; Barea, E.; Navarro, J. A. R. Highly Hydrophobic Isoreticular Porous Metal-Organic Frameworks for the Capture of Harmful Volatile Organic Compounds. Angew. Chem., Int. Ed. 2013, 52, 8290-8294.
- 67. Hou, C.; Liu, Q.; Wang, P.; Sun, W.-Y. Porous metal-organic frameworks with high stability and selective sorption for CO2 over N2. Microporous Mesoporous Mater. 2013, 172, 61-66.
- 68. Kundu, T.; Sahoo, S. C.; Banerjee, R. Variable Water Adsorption in Amino Acid Derivative Based Homochiral Metal Organic Frameworks. Cryst. Growth Des. 2012, 12, 4633-4640.
- 69. Huang, Y.; Zheng, X.; Duan, J.; Liu, W.; Zhou, L.; Wang, C.; Wen, L.; Zhao, J.; Li, D. A highly stable multifunctional three-dimensional microporous framework: excellent selective sorption and visible photoluminescence. Dalton Trans. 2014, 43, 6811-6818.
- 70. Hou, C.; Liu, Q.; Okamura, T.-a.; Wang, P.; Sun, W.-Y. Dynamic porous metal-organic frameworks: synthesis, structure and sorption property. CrystEngComm 2012, 14, 8569-8576.
- Sun, J.-K.; Ji, M.; Chen, C.; Wang, W.-G.; Wang, P.; Chen, R.-P.; Zhang, J. A chargepolarized porous metal-organic framework for gas chromatographic separation of alcohols from water. Chem. Commun. 2013, 49, 1624-1626.
- 72. Lin, X.-M.; Li, T.-T.; Chen, L.-F.; Zhang, L.; Su, C.-Y. Two ligand-functionalized Pb(ii) metal-organic frameworks: structures and catalytic performances. Dalton Trans. 2012, 41, 10422-10429.
- Sohail, M.; Yun, Y.-N.; Lee, E.; Kim S. K.; Cho, K.; Kim, J.-N.; Kim, T. W.; Moon, J.-H.; Kim, H. Synthesis of Highly Crystalline NH2-MIL-125 (Ti) with S-Shaped Water Isotherms for Adsorption Heat Transformation. Cryst. Growth Des. 2017, 17, 1208-1213.
- Teo, H. W. B.; Chakraborty, A.; Kayal, S. Post synthetic modification of MIL-101(Cr) for Sshaped isotherms and fast kinetics with water adsorption. Appl. Therm. Eng. 2017, 120, 453-462.
- Yan, J.; Yu, Y.; Ma, C.; Xiao, J.; Xia, Q.; Li, Y.; Li, Z. Adsorption isotherms and kinetics of water vapor on novel adsorbents MIL-101(Cr)@GO with super-high capacity. Appl. Therm. Eng. 2015, 84, 118-125.
- Elsayed, E.; Wang, H.; Anderson, P. A.; Al-Dadah, R.; Mahmoud, S.; Navarro, H.; Ding, Y.; Bowen, J. Development of MIL-101(Cr)/GrO composites for adsorption heat pump

applications. Microporous Mesoporous Mater. 2017, 244, 180-191.

- Nalaparaju, A.; Babarao, R.; Zhao, X. S.; Jiang, J. W. Atomistic Insight into Adsorption, Mobility, and Vibration of Water in Ion-Exchanged Zeolite-like Metal-Organic Frameworks. ACS Nano. 2009, 3, 2563-2572.
- Lenzen, D.; Zhao, J.; Ernst, S.-J.; Wahiduzzaman, M.; Inge, A. K.; Fröhlich, D.; Xu, H.; Bart, H.-J.; Janiak, C.; Henninger, S.; Maurin, G.; Zou, X.; Stock, N. A metal–organic framework for efficient water-based ultra-low-temperature-driven cooling. Nat. Commun. 2019, 10, 3025.
- Wang, S.; Lee, J. S.; Wahiduzzaman, M.; Park, J.; Muschi, M.; Martineau-Corcos, C.; Tissot, A.; Cho, K. H.; Marrot, J.; Shepard, W.; Maurin, G.; Chang, J.-S.; Serre, C. A robust largepore zirconium carboxylate metal–organic framework for energy-efficient water-sorptiondriven refrigeration. Nat. Energy 2018, 3, 985–993.
- Cadiau, A.; Lee, J. S.; Borges, D. D.; Fabry, P.; Devic, T.; Wharmby, M. T.; Martineau, C.; Foucher, D.; Taulelle, F.; Jun, C.-H.; Hwang, Y. K.; Stock, N.; De Lange, M. F.; Kapteijn, F.; Gascon, J.; Maurin, G.; Chang, J.-S.; Serre, C. Design of Hydrophilic Metal Organic Framework Water Adsorbents for Heat Reallocation. Adv. Mater. 2015, 27, 4775-4780.
- Mouchaham, G.; Cooper, L.; Guillou, N.; Martineau, C.; Elkaïm, E.; Bourrelly, S.; Llewellyn, P. L.; Allain, C.; Clavier, G.; Serre, C.; Devic, T. A Robust Infinite Zirconium Phenolate Building Unit to Enhance the Chemical Stability of Zr MOFs. Angew. Chem. Int. Ed. 2015, 54, 13297 –13301.
- Chanut, N.; Bourrelly, S.; Kuchta, B.; Serre, C.; Chang, J.-S.; Wright, P. A.; Llewellyn, P. L. Screening the Effect of Water Vapour on Gas Adsorption Performance: Application to CO2 Capture from Flue Gas in Metal-Organic Frameworks. ChemSusChem 2017, 10, 1543-1553.
- 83. Hermer, N.; Stock, N. The new triazine-based porous copper phosphonate [Cu3(PPT)(H2O)3]·10H2O. Dalton Trans. 2015, 44, 3720–3723.
- Roztocki, K.; Lupa, M.; Sławek, A.; Makowski, W.; Senkovska, I.; Kaskel, S.; Matoga, D. Water-Stable Metal-Organic Framework with Three Hydrogen-Bond Acceptors: Versatile Theoretical and Experimental Insights into Adsorption Ability and Thermo-Hydrolytic Stability. Inorg. Chem. 2018, 57, 3287-3296.
- 85. Begum, S.; Horike, S.; Kitagawa, S.; Krautscheid, H. Water stable triazolyl phosphonate MOFs: steep water uptake and facile regeneration. Dalton Trans. 2015, 44, 18727–18730.
- Begum, S.; Wang, Z.; Donnadio, A.; Costantino, F.; Casciola, M.; Valiullin, R.; Chmelik, C.; Bertmer, M.; Kärger, J.; Haase, J.; Krautscheid, H. Water-Mediated Proton Conduction in a Robust Triazolyl Phosphonate Metal-Organic Framework with Hydrophilic Nanochannels. Chem. Eur. J. 2014, 20, 1–6.
- Álvarez, J. R.; Peralta, R. A.; Balmaseda, J.; González-Zamora, E.; Ibarra, I. A. Water adsorption properties of a Sc(III) porous coordination polymer for CO2 capture applications. Inorg. Chem. Front. 2015, 2, 1080–1084.
- Sánchez-González, E.; Álvarez, J. R.; Peralta, R, A.; Campos-Reales-Pineda, A.; Tejeda-Cruz, A.; Lima, E.; Balmaseda, J.; González-Zamora, E.; Ibarra, I. A. Water Adsorption Properties of NOTT-401 and CO2 Capture under Humid Conditions. ACS Omega 2016, 1, 305-310.