Supporting Information

Effect of the Ti₃C₂T_x-PEDOT: PSS Modified-Separators on the electrochemical performance of Li-S batteries

Juan Li^{a,1}, Qi Jin^{a,1}, Fei Yin^a, Chuncheng Zhu^a, XiTian Zhang^{a,*}, and Zhiguo Zhang^b

^a Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education,

School of Physics and Electronic Engineering, Harbin Normal University, Harbin

150025, People's Republic of China.

^b Condensed Mater Science and Technology Institute, Department of Physics, Harbin

Institute of Technology, Harbin 150001, People's Republic of China.

¹ These authors contributed equally to this work.

^{*} Corresponding author: E-mail: xtzhangzhang@hotmail.com (X.T. Zhang).

Fig. S1 Digital photographs of (a) pure $Ti_3C_2T_x$ and (b) $Ti_3C_2T_x$ -P modified separators.

Fig. S2 (a) SEM image of the $Ti_3C_2T_x$ -P hybrid. (b-e) Elemental mapping images of Ti/C/O/S element for the $Ti_3C_2T_x$ -P hybrid.

Fig. S3 (a) N₂ adsorption-desorption isotherms and (b) pore size distribution plot of the $Ti_3C_2T_x$ nanosheets and $Ti_3C_2T_x$ -P hybrid, respectively.

Fig. S4 (a) Survey XPS spectra. High-resolution (b) S 2p and (c) C 1s XPS spectra of $Ti_3C_2T_x$ nanosheets and $Ti_3C_2T_x$ -P hybrid.

Fig. S5 (a) The cell capacity as a function of the PEDOT: PSS content for the first cycle (red) and the 100^{th} (blue) at a current density of 0.5 C. (b) Capacity retention rate as a function of the PEDOT: PS content.

Fig. S6 GCD profiles of the cells with (a) blank, (b) $Ti_3C_2T_x$ -modified and (c) $Ti_3C_2T_x$ -P separators at different current densities.

Fig. S7 GCD profiles of the cell with $Ti_3C_2T_x$ -P separators at a current density of 0.5 C.

Fig. S8 SEM images of (a) pure $Ti_3C_2T_x$ and (b) $Ti_3C_2T_x$ -P modified separators after 30 cycles at 0.5 C.

Table S1. XPS peak fitting results for $Ti_3C_2T_x$ nanosheets and $Ti_3C_2T_x$ -P hybrid.

Region	BE (eV)	Assigned to	Substance	Reference
Ti 2p _{3/2} (2p _{1/2})	454.9(461.1)	Ti-C	$Ti_3C_2T_x$	[1]
	456.4(463.2)	Ti^{2+}	$TiO_x (1.5 < x < 2)$	[2]
	458.9(464.8)	Ti-O	TiO ₂	[2,3]
O 1s	530.0	TiO ₂	TiO ₂	[2]
	531.9	C-Ti-O	$Ti_3C_2O_x$	[4,5]
	533.0	Al ₂ O ₃		[4,5]
C 1s	280.9	C-Ti	$Ti_3C_2T_x$	[1]
	281.7	C-Ti-O	С	[2,6]
	284.7	C-C	С	[2,6]
	285.8	C-0	С	[2,6]
	288.8	C=O	С	[2,6]

Sample1: $Ti_3C_2T_x$

Sample2: Ti ₃ C ₂ T _x -P							
Region	BE (eV)	Assigned to	Substance	Reference			
Ti 2p _{3/2} (2p _{1/2})	455.3(461.2)	Ti-C	$Ti_3C_2T_x$	[1,5]			
	456.4(463.2)	$T\dot{i}^{2+}$	TiO _x	[2]			
	459.3(464.8)	Ti-O	(1.5 <x<2)< th=""><th>[3,4]</th></x<2)<>	[3,4]			
			TiO ₂				
O 1s	529.8	TiO ₂	TiO ₂	[2]			
	531.7	C-Ti-O/PSS	$Ti_3C_2T_x$ -P	[3]			
	533.2	PEDOT	PEDOT	[4,7]			
C 1s	281.6	C-Ti-O	С	[2,6]			
	284.7	C-C	С	[2,6]			
	285.6	C-O	С	[2,6]			
	288.8	C=O	С	[2,6]			
S 2p	163.3	PEDOT2p _{3/2}	PEDOT: PSS	[5,7]			
	164.4	$PEDOT2p_{1/2}$	PEDOT: PSS	[5,7]			
	165.4	PEDOT Oxidized (O _x)	PEDOT: PSS	[5,7]			
	167.7	PSS2p _{3/2}	PEDOT: PSS	[5,7]			
	168.8	$PSS2p_{1/2}$	PEDOT: PSS	[5,7]			

Samples	Conductivity, S/cm
Ti ₃ C ₂ T _x	1.66
$Ti_3C_2T_x$ -P	3.19

Table S2. Electrical conductivities of $Ti_3C_2T_x$ nanosheets and $Ti_3C_2T_x$ -P hybrid.

References

- [1] J. Halim, K.M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen, M.W. Barsoum, *Appl. Surf. Sci.*, 2016, **362**, 406–417.
- [2] Q.S. Fu, J. Wen, N. Zhang, L.L. Wu, M.Y. Zhang, S.Y. Lin, H. Gao, X.T. Zhang, RSC Adv., 2017, 7, 11998–12005.
- [3] M. Ghidiu, J. Halim, S. Kota, D. Bish, Y. Gogotsi, M.W. Barsoum, *Chem. Mater.*, 2016, 28, 3507–3514.
- [4] E. Satheeshkumar, T. Makaryan, A. Melikyan, H. Minassian, Y. Gogotsi, M. Yoshimura, *Sci. Reports*, 2016, 6, 32049.
- [5] G.S. Gund, J.H. Park, R. Harpalsinh, M. Kota, J.H. Shin, T. Kim, Y. Gogotsi, H.S. Park, *Joule*, 2019, 3, 1–13.
- [6] L. Li, M.Y. Zhang, X.T. Zhang, Z.G. Zhang, J. Power Sources, 2017, 364, 234–
 241.
- [7] M. Wang, M. Zhou, L. Zhu, Q. Li, C. Jiang, Solar Energy, 2016, 129, 175–183.