Supporting Information

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Analysis of sequence-defined oligomers through advanced polymer chromatography mass spectrometry hyphenation

Marie-Theres Berg,^a Chiel Mertens, ^b Filip Du Prez, ^b Thomas D. Kühne, ^a Artjom Herberg ^a and Dirk Kuckling *^a

Figure S 1: Elution profiles of the mixture of tetramer, hexamer and octamer with alternating order of monomer units with different flow rate within an APC measurement.

^{a.} Paderborn University, Faculty of Science, Department of Chemistry, Warburger Straße 100, 33098 Paderborn (NRW), Germany.

^{b.} Ghent University, Centre of Macromolecular Research (CMaC), Polymer Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Krijgslaan 281, S4bis, B-9000 Ghent, Belgium.

Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

ARTICLE

Figure S 2: Influence of the flow rate to the calculated number of plates with constant measurement conditions. Calculated for the hexamer sample with alternating order of monomer units.

Table S 1: Optimized structures of B3T3 and BT3 singly and doubly charged with the added ion coloured in black.

Please do not adjust margins

Journal Name

Please do not adjust margins

ARTICLE

Journal Name

Please do not adjust margins

Journal Name

Figure S 3: Drifttime distribution of both hexamers with lithium iodide as ionization agents. Triple measurements of each wave velocity indicated with different types of lines.

		First measurement	Second measurement	Third measurement
BT3	300 m/s	1.64	1.64	1.65
	400 m/s	2.96	2.98	2.97
	500 m/s	4.19	4.20	4.20
	900 m/s	8.79	8.81	8.80
	1200 m/s	12.18	12.21	12.20
	1500 m/s	16.00	16.02	16.01
B ₃ T ₃	300 m/s	1.74	1.74	1.74
	400 m/s	3.08	3.08	3.08
	500 m/s	4.31	4.31	4.31
	900 m/s	8.97	8.98	8.98
	1200 m/s	12.38	12.38	12.39
	1500 m/s	16.18	16.19	16.17

Table S 2: absolute drifttimes of both hexamer structures with lithium iodide as ionization agent for all wave velocities and all three measurements.

Journal Name

Figure S 4: Drifttime distribution of both hexamers with sodium iodide as ionization agents. Triple measurements of each wave velocity indicated with different types of lines.

Table S 3: Absolute drifttimes of both hexamer structures with sodium iodide as ionization agent for all wave velocities and all three measurements.

		First measurement	Second measurement	Third measurement
BT3	300 m/s	1.73	1.73	1.73
	400 m/s	3.06	3.06	3.06
	500 m/s	4.27	4.28	4.28
	900 m/s	8.91	8.91	8.91
	1200 m/s	12.32	12.32	12.32
	1500 m/s	16.15	16.15	16.15
B₃T₃	300 m/s	1.75	1.75	1.75
	400 m/s	3.10	3.10	3.10
	500 m/s	4.34	4.34	4.34
	900 m/s	9.03	9.03	9.04
	1200 m/s	12.47	12.47	12.47
	1500 m/s	16.31	16.31	16.31

Figure S 5: Drifttime distribution of both hexamers with potassium iodide as ionization agents. Triple measurements of each wave velocity indicated with different types of lines.

Table S 4: Absolute drifttimes of both hexamer structures with potassium iodide as ionization agent for all wave velocities and all three measurements.

		First	Second	Third measurement
		measurement	measurement	
ΒT₃	300 m/s	1.77	1.77	1.77
	400 m/s	3.08	3.09	3.09
	500 m/s	4.30	4.30	4.30
	900 m/s	8.97	8.97	8.97
	1200 m/s	12.42	12.42	12.41
	1500 m/s	16.32	16.32	16.32
B ₃ T ₃	300 m/s	1.77	1.77	1.77
	400 m/s	3.12	3.12	3.12
	500 m/s	4.35	4.35	4.35
	900 m/s	9.06	9.06	9.06
	1200 m/s	12.51	12.52	12.52
	1500 m/s	16.41	16.40	16.41

		First measurement	Second measurement	Third measurement
BT₃	300 m/s	1.85	1.85	1.85
	400 m/s	3.23	3.23	3.23
	500 m/s	4.50	4.51	4.50
	900 m/s	9.40	9.40	9.40
	1200 m/s	13.06	13.06	13.06
	1500 m/s	17.27	17.27	17.27
B₃T₃	300 m/s	1.75	1.76	1.79
	400 m/s	3.15	3.15	3.16
	500 m/s	4.42	4.42	4.43
	900 m/s	9.28	9.27	9.28
	1200 m/s	12.92	12.93	12.93
	1500 m/s	17.18	17.20	17.22

300 m/s (3) 1E+05 400 m/s (1) 400 m/s (2) 5E+04 400 m/s (3) 500 m/s (1) 0E+00 500 m/s (2) 5 10 15 20 Ò 500 m/s (3) Drifttime (ms) 900 m/s (1) $B_{3}T_{3}$ 900 m/s (2) 900 m/s (3) 4,0E+05 1200 m/s (1) 1200 m/s (2) 3,0E+05 1200 m/s (3) Signal 1500 m/s (1) 2,0E+05 1500 m/s (2) 1500 m/s (3) 1,0E+05 0,0E+00 + 0 5 10 15 20

2E+05 300 m/s (1) 2E+05 Signal 300 m/s (2)

Please do not adjust margins

 BT_3

ARTICLE

Figure S 7: polyalanine calibration of the CCS versus the drifttime with a wave velocity of 500 m/s.