Supplementing Information

Highly stable folic acid functionalized copper-nanocluster/silica

nanoparticles for selective targeting of cancer cells

Xiaoming Fang[†] Yanhua Huang[†], Dan Yu, Caiwen Shi and Ming Liu*

E-mail: 2306051553@qq.com.

Fig. S1 Zeta potential histogram of CuNCs, CuNCs@SiO₂ and CuNCs@SiO₂/PLL-FA.

Fig. S2 (A) Variation of zeta potential of CuNCs@SiO₂/PLL-FA nanocomposites after incubated in PBS buffer (pH=7.4) for continuous 48 hours, which presents slight change at each 4 hours interval, demonstrating their excellent colloidal stability. (B) Absorbance at 360 nm of the supernatant separated from CuNCs@SiO₂/PLL-FA nanocomposites after incubated in PBS buffer for continuous 48 hours. The supernatant shows no obvious absorbance of FA indicating that the CuNCs@SiO₂/PLL-FA nanocomposites are stable in biological environment for cell detection contributed to the tough conjugation of FA on the surface.

Fig. S3 UV-vis absorption spectra of PLL-FA before conjugated with CuNCs@SiO₂ (red line) and the supernatant separated from CuNCs@SiO₂/PLL-FA nanocomposites (black line).

Following the calculation of FA on each CuNCs@SiO₂/PLL-FA:

According to the Beer–Lambert law

A=Kbc

1.

A is the absorbance

K is the molar attenuation coefficient

b is the optical path length

c is the concentration of the attenuating species

For pure FA, A=0.5, c=1.9 x 10^{-4} M (from UV-vis measurement), and Kb is 2.6 x 10^{3} derived from 1. From Fig. S3, the absorbance of PLL-FA at 360 nm before and after conjugated with CuNCs@SiO₂ is 0.33 and 0.21, respectively. Based on equation 1. and the value of Kb, the concentration of PLL-FA conjugated with CuNCs@SiO₂ is 0.46 x 10^{-4} M. The volume of the solution is 21 mL, thus the total quantity (N) of FA conjugated on CuNCs@SiO₂ is 9.66 x 10^{-7} M.

The weight (m) of CuNCs@SiO₂ is 23 mg (deducting the weight of CuNCs), the density (ρ) of SiO₂ is 2.2 g/cm³,¹ and the diameter (d) of the CuNCs@SiO₂ is 52 nm.

m=n x ρ x 4/3 x π x (d/2)³ 2.

n is calculated ca. 1.42×10^{14} from equation 2.

The number of FA conjugated on each CuNCs@SiO₂ is calculated by the equation of N x N_A/n (N_A=6.02 x 10^{23}), which is derived ca. 4095.

Fig. S4 Micrographs of KB cells (upper panel) and MCF-7 cells (lower panel) after incubated with CuNCs@SiO₂/PLL nanoparticles (50 μg/mL) for 12 h. Left: phase-contrast bright field images. Middle: fluorescence images. Right: the overlapped images of bright field and fluorescence images. For MCF-7 cells, the fluorescence signals are both weak after incubated with CuNCs@SiO₂/PLL and CuNCs@SiO₂/PLL-FA indicating that a few nanoprobes were internalized by MCF-7 cells. Compared with KB cells, the uptake of CuNCs@SiO₂/PLL-FA increased contributed to the high FR in KB cells.

References

1. T. Yu, A. Malugin and H. Ghandehari, ACS Nano, 2011, 5, 5717-5728.