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3D structure (~ 7 nm SrO)
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Figure S1. RHEED images of 3D structure. a) after initial deposition of 1 nm of SrO (in vacuum); b-

e) deposition of additional 6 nm of SrO in argon via Route III; b) 2 nm, c) 4 nm, d) 5 nm, e) 6 nm. 

RHEED images are recorded in vacuum. f)  The total thickness of 7 nm of SrO, recorded in vacuum. 

Incident azimuth in all cases was Si <100>.

Figure S2. Area of the line scan a) and the corresponding HAADF profile b) of the 

Si/SrSix/SrSiOx/SrOx/TiOx sample.
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Figure S3. Electron-beam induced changes in Si/SrSix/SrSiOx/SrO/TiOx sample: a) Damaged region 

of the SrSiOx layer and b) formation of crystalline SrTiO3 on the interface between SrOx and TiOx. 

Arrows point to areas of interest.
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Calculation of reciprocal space distances

The determination of the distances in the reciprocal space is based on the feature of the 

RHEED method to probe the bulk of the crystal in the case of higher tilt angles. In this way, not only 

the distances in reciprocal space can be calculated but also the high-symmetry azimuthal direction 

can be identified. Because of the periodicity, the marked distances in Figure S4a and Figure S4d can 

be divided in two and four segments, respectively.
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Figure S4: The RHEED patterns of Si (001)/SiO2 substrate (a and d), 3D pattern (b and c) and 

mixture of a 3D pattern and 2× (1×) Sr-reconstruction of silicon surface (e and f). The distances were 

measured from the center of the spots, defined by the highest intensity. The azimuthal direction is 

marked in the upper left corner of RHEED images.

The length of segment is 9.3550 and 6.6825 for Figure S4a and Figure S4d, respectively, with 

ratio close to . Thus, it can be concluded that azimuthal directions in case of Figure S4a and √2

Figure S4d are <100> and <110>, respectively. Since some RHEED patterns in our study contained 

both streaks (contribution from the smooth, 2×1 Sr-reconstructed silicon surface) and spots 

(contribution from 3D structure), to elaborate the reciprocal space distances the two approaches 

based on: i) surface lattice and ii) formalism of transmission electron microscopy can be used. For 

this purpose, we will use measured distances (Figure S4).
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Surface lattice formalism

To calculate reciprocal space distances we first need to calculate screen constants from the measured 

distances of Si surface lattice (Figure S4a,d). For Si(001) surface lattice, whose lattice spacing is 

a=5.43 Å/√2, the reciprocal lattice spacing is (2π/a)=1.63642 Å-1. Thus, the screen constants, k1 and 

k2, from Figure S4a and Figure S4d are, respectively:

(1)

18.71
2

∙ 𝑘1 = 2.3142 Å ‒ 1, 𝑘1 = 0.247381 Å ‒ 1

(2)

26.73
4

∙ 𝑘2 = 1.6364 Å ‒ 1, 𝑘2 = 0.244881 Å ‒ 1

These constants can be used to calculate reciprocal spacing of 3D structure and 2×1 Sr-

reconstruction.

For 3D structure (Figure S4b,c):

(3)

17.81
4

∙ 𝑘1 = 1.1015 Å ‒ 1

(4)

12.62
2

∙ 𝑘1 = 1.5609 Å ‒ 1

 For 2×1 Sr-reconstruction (Figure S4e,f):

(5)

18.34
2

∙ 𝑘2 = 2.2456 Å ‒ 1

(6)

13.10
4

∙ 𝑘2 = 0.8020 Å ‒ 1

In Figure S4e,f a spotty pattern of 3D structure can also be observed:

(7)

18.34
4

∙ 𝑘2 = 1.1228 Å ‒ 1

(8)

13.10
2

∙ 𝑘2 = 1.6040 Å ‒ 1

As can be observed, in the case of 2×1 Sr-reconstructed silicon surface, the calculated values 

(eqs. 5 and 6) are nicely matching the theoretical ones (2.3142 Å-1 and 0.8182 Å-1) i.e. there is ~3% 

difference. As it was discussed in the main text, the most probable candidate that contributes to 3D 

structure is SrO. However, we can see that calculated reciprocal spacing of 3D structure (eqs. 3 and 

4, eqs. 7 and 8) is larger than theoretical ones (0.388 Å-1 and 0.548 Å-1). However, if we consider 3rd-

order diffraction, then the values in eqs. 3 and 4, eqs. 7 and 8 should be divided by 3, hence giving 

the average values (0.371 Å-1 and 0.528 Å-1, respectively) that are close to theoretical ones (0.388 Å-1 

and 0.548 Å-1).



6

Formalism of transmission electron microscopy 

If we consider that spotty RHEED pattern is a result of transmitted e-beam, then diffraction pattern 

should follow selection rules based on structure factors. Let us apply the same approach for silicon 

substrate before (with native oxide) and after deoxidation (2×1 Sr-reconstructed surface). 

Let us first calculate screen constants using the stated approach. Thus, the screen constants, k1 and 

k2, from Figure S4a and Figure S4d are, respectively:

(9)

18.71
2

∙ 𝑘1 = 0.737 Å ‒ 1, 𝑘1 = 0.078781 Å ‒ 1

 (10)

26.73
4

∙ 𝑘2 = 0.521 Å ‒ 1, 𝑘2 = 0.077964 Å ‒ 1

These constants can be used to calculate reciprocal spacing of 3D structure and 2×1 Sr-

reconstruction.

For 3D structure (Figure S4b,c):

 (11)

17.81
4

∙ 𝑘1 = 0.3508 Å ‒ 1

 (12)

12.62
2

∙ 𝑘1 = 0.4971 Å ‒ 1

For 2×1 Sr-reconstruction (Figure S4e,f):

 (13)

18.34
2

∙ 𝑘2 = 0.7149 Å ‒ 1

 (14)

13.10
4

∙ 𝑘2 = 0.2553 Å ‒ 1

In Figure S4e,f a spotty pattern of 3D structure can also be observed:

 (15)

18.34
4

∙ 𝑘2 = 0.3575 Å ‒ 1

 (16)

13.10
2

∙ 𝑘2 = 0.5107 Å ‒ 1

As can be observed, in the case of 2×1 Sr-reconstructed silicon surface, the experimental 

values (eqs. 13 and 14) are nicely matching the theoretical ones (0.738 Å-1 and 0.261 Å-1). The same 

can be concluded if calculated values (eqs. 11, 12 and 15,16) are compared to theoretical one (Figure 

5b). This method is more convenient since both surface and island contributions are considered 

based on structure factors characteristic for Si and SrO, because of which this method was used in 

the manuscript. 
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Figure S5. Reciprocal surface lattices of a) 2×1 reconstructed Si (001) surface and b) SrO (001) 

surface considering the structure factor. The distance between lattice points is scaled accordingly. 

The units are in Å-1.


