Supplementary Information

Unveiling the enhanced photoelectrochemical and photocatalytic properties of reduced graphene oxide for photodegradation of methylene blue dye

Valerie Ling Er Siong, Xin Hong Tai, Kian Mun Lee, Joon Ching Juan, Chin Wei Lai

aNanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia.

*corresponding author: cwlai@um.edu.my

Description of Supplementary Information

Fig. S1. Light spectrum of UV-C light source for photodegradation experiment.

Fig. S2. Tauc plot for indirect band gap of G-0 to G-8.

Fig. S3. 50 ppm MB for photolysis, and dark adsorption by G-0 to G-8.

Fig. S4. Time-dependent UV-Vis absorption spectra for photodegradation of 50 ppm MB from time 0 to 6 h by (a) G-0, (b) G-1, (c) G-2, (d) G-4, and (e) G-8.

Eqn (S1). Conversion of vs. Ag/AgCl pH 6.5 to vs. NHE pH 7.0.

Eqn (S2). Calculation of acceptor charge density of p-type semiconductor.

Eqn (S3). Calculation of conduction band potential.
Fig. S1. Light spectrum of UV-C light source for photodegradation experiment.
Fig. S2. Tauc plot for indirect band gap of G-0 to G-8.
Fig. S3. 50 ppm MB for photolysis, and dark adsorption by G-0 to G-8.
Fig. S4. Time-dependent UV-Vis absorption spectra for photodegradation of 50 ppm MB from time 0 to 6 h by (a) G-0, (b) G-1, (c) G-2, (d) G-4, and (e) G-8.
Eqn (S1). Conversion of vs. Ag/AgCl pH 6.5 to vs. NHE pH 7.0.

Conversion of potential, E from versus Ag/AgCl (pH 6.5) to versus normal hydrogen electrode (NHE, pH 7) [1].

$$E_{\text{NHE, pH 7}} = E_{(\text{Ag/AgCl pH 6.5})} + 0.21 - 0.059 \times (7.0 - 6.5)$$ \hspace{1cm} (S1)
Eqn (S2). Calculation of acceptor charge density of p-type semiconductor.

\[
\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 N_A} \left[(-V + E_{FB}) - \frac{kT}{e} \right]
\]

\[
\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 N_A} [-V + E_{FB}]
\]

\[
\frac{1}{C^2} \frac{dV}{dV} = \frac{2}{\varepsilon \varepsilon_0 N_A}
\]

\[
-\text{gradient} = \frac{2}{\varepsilon \varepsilon_0 N_A}
\]

\[
N_A = -\frac{2}{\varepsilon \varepsilon_0 (\text{gradient})} \frac{kT}{e}
\]

The value of \(\frac{kT}{e} \) is negligibly small at room temperature [2]. The M-S plot is \(1/C^2 \) (y-axis) versus V (x-axis), hence \(\frac{dV}{dV} \) is equal to the gradient \(\left(\frac{dy}{dx} \right) \) of the slope.

Where:

\(C = \text{capacitance} \)

\(e = \text{electron charge} \ (1.602 \times 10^{-19} \text{ C}) \)

\(\varepsilon_0 = \text{permittivity of vacuum} \ (8.854 \times 10^{-12} \text{ F m}^{-1}) \)

\(\varepsilon = \text{dielelectric constant of the GO} \ (\sim 1000 \ [3]). \)

\(V = \text{applied bias potential} \)

\(E_{FB} = \text{flat band potential} \)

\(k = \text{Boltzmann constant} \)

\(T = \text{temperature} \)

\(N_A = \text{acceptor/hole density} \)

Therefore,

\(\text{Gradient}_{G-0} = -1.52 \times 10^{11} \text{ F}^{-2} \text{ cm}^4 \text{ V}^{-1} \)

\(N_{A G-0} = 9.28 \times 10^{15} \text{ cm}^{-3} \)
\[\text{Gradient}_{G-2} = -1.22 \times 10^{11} \text{ } F^{-2} \text{ } cm^4 V^{-1} \]

\[N_{A_G-2} = 1.16 \times 10^{16} \text{ } cm^{-3} \]

Eqn (S3). Calculation of conduction band potential.

\[E_{CB} = E_{VB} - E_{BG} \quad \text{(S3)} \]

Where,

\[E_{CB} = \text{Conduction band potential (V)} \]

\[E_{VB} = \text{Valence band potential (V)} \]

\[E_{BG} = \text{Band gap energy (eV)} \]

Thus,

\[E_{CB_{G-0}} = 2.23 - 3.75 = -1.52 \text{ } V \]

\[E_{CB_{G-2}} = 2.17 - 3.10 = -0.93 \text{ } V \]

References
