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ESI1

Definition of coherent scattering size in the La0.6Ag0.2Mn1.2O3 nanopowder

The relationship between the broadening of the diffraction maximum and a decrease 

in the size of crystallites (coherent scattering regions) can be obtained from the Scherrer 

equation [1]:

D = Kλ /βcosθ, (S1)

where D is the scattering crystallites size in nm; λ = 0.154178 nm is the wavelength of the X-

ray CuKα-radiation; K ≈ 1 is a Scherrer constant, which depends on the method for 

determining the line broadening and the crystal shape; β is the integral width of the reflex at 

half the maximum height in radians; and θ is the diffraction angle in degrees. The true 

integral width of the peak was calculated using the Warren formula [2]:

2 2
exp 0 ,   
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where βexp is the experimental peak width at half the maximum intensity; and β0 is the 

instrumental broadening of the diffraction line, which depends on the design features of the 

diffractometer. The resolution function of the diffractometer, β0, was determined in another 

experiment from the diffraction pattern for the LaB6 standard. For the La0.6Ag0.2Mn1.2O3 

nanopowder, the average size of coherent scattering regions D012 = 62 ± 2 nm was obtained 

while approximating experimental values of the diffraction maximum (Bragg angle of 2θ ≈ 

22.8°) by the Lorentzian function (see figure S1) and taking into account all the experimental 

parameters in the Eq. (S1) (see Table S1).

Figure S1. The diffraction pattern and its approximation by Lorentzian function for the 
La0.6Ag0.2Mn1.2O3 nanopowder in the region of the (012) and (024) reflections with the angles 
of 2θ ≈ 22.8° and 2θ ≈ 46.77°.

Table S1
The experimental parameters of Scherrer equation (S1) for determining the average size of 
the coherent scattering regions D012 in the La0.6Ag0.2Mn1.2O3 nanopowder.

2θ (°) β (radian) cosθ λ (nm) K D012 (nm)

22.85 0.0024 0.922 0.154187 1 62±2

The X-ray pattern (see figure S1) shows a single pair of non-overlapping lines with 

multiple Miller’s indices (012) at 2θI = 22.9° (peak I with the X-ray line half-width βI) and 
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(024) at 2θII = 46.8° (peak II with X-ray line half-width βII). For a rhombohedral perovskite 

cell, the βII/βI ratio is in the range of cosθI/cosθII < βII/βI < tgθII/tgθI [3]. An analysis of the 

coincidences βII/βI ≈ tgθII/tgθI or βII/βI ≈ cosθI/cosθII implies the reason for the broadening of 

the reflections. For βII/βI ≈ tgθII/tgθI, the broadening of diffraction lines is determined by 

microstresses. For βII/βI ≈ cosθI/cosθII, the broadening of diffraction lines is determined by a 

decrease in the crystallite size. If βII/βI is in the middle of this range, both these factors affect 

the broadening of diffraction lines. From Table S2, it can be seen that the βII/βI ratio is closer 

to the cosθI/cosθII ratio. This indicates that in the region of small diffraction angles, the width 

of the X-ray lines is mainly determined by the size of the scattering crystallites, but not by 

microstresses. Therefore, the size of coherent scattering region was calculated using the 

Debye-Scherrer formula [1,2], but not the William-Hall method [4] which takes into account 

the effect of microstresses.

Table S2
The experimental angle parameters for the X-ray pattern (see figure S1) of the 
La0.6Ag0.2Mn1.2O3 nanopowder.

θI (°) θII (°) βI (rad.) βII (rad.) βII/βI cosθI/cosθII tgθII/tgθI
22.85 46.77 0.0024 0.0036 1.5 1.3 2.5

ESI2

Definition of the particle size distribution function in the magnetic La0.6Ag0.2Mn1.2O3 

nanopowder

Analysis of the raster SEM images along the particle contour according to the scale 

factor makes it possible to plot the particle size distribution (see figure S2).
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Figure S2. Particle size distribution according to SEM image (inset) for the 
La0.6Ag0.2Mn1.2O3.

While approximating particle size dispersion, three functions are usually used:

the Gaussian function
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the LogNormal Distribution function 
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where A is a constant, х0 is the mathematical expectation which corresponds to the average 

particle size, and σ2 is the dispersion which means the size dispersion for the particle 

ensemble. The normalized  condition has been used to obtain the analytical 
0

( ) 1f x dx




form of f(x) (see Table S3).
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The best approximation of particle size dispersion was made by the LogNormal 

Distribution function (S4). The selection criterion was the highest approximation accuracy at 

which the determination coefficient R2 takes the maximum value for the LogNormal 

Distribution (S4) (see figures S3 and S4, Table S3).

Figure S3. Approximation of the experimental values of the particle size D by the Gaussian 
function, the Lorentzian function, and the LogNormal Distributionfunction for the 
La0.6Ag0.2Mn1.2O3 nanopowder.

Figure S4. SEM image and the particle size distribution f(D) (histogram) with its 
approximation (solid line) by the LogNormal Distribution as well as the average particle size 
D0

SEM for the La0.6Ag0.2Mn1.2O3 nanopowder.

Table S3
The average particle size D0, the particle size dispersion σ, the accuracy criteria χ2 and R2 at 
approximating the experimental values of the particle size by the Gaussian, the Lorentzian, 
and the LogNormal Distribution functions

Function D0, nm σ, nm χ2 R2

Gaussian 62.5±2.2 21.2±2.3 3.3985·10-6 0.93777

Lorentzian 62.3±1.5 38.9±4.1 1.2668·10-6 0.97166

LogNormal 65.3±1.2 24.4±1.5 7.9539·10-7 0.98448
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The performed analysis made it possible to determine the average particle size D0 = 

65.3±1.2 nm in the La0.6Ag0.2Mn1.2O3 nanopowder and to establish that 89% of the particles 

had a size from 8 to 100 nm according to the condition .
100

0
( ) 0.89f D dD 

ESI3

The A- and B-structural positions, valence and magnetic states of manganese in non-

stoichiometric La0.6Ag0.2Mn1.2O3 nanopowder

In the La0.6Ag0.2Mn1.2O3 material, manganese is the only magnetic ion, and the 

magnetic properties of the nanopowder depend on its valence and magnetic state. FM 

ordering appears as a result of a double exchange between the different valence ions MnB
3+ 

and MnB
4+, which are in the B-positions of perovskite [5]. Superstoichiometric manganese 

Mn2+ occupies the A-positions and forms clusters [6] with AFM ordering at temperature T = 

50 K (see figure 3) [7]. Therefore, the FM order at TC is only associated with the ordering of 

MnB
3+ and MnB

4+. In the PM region above TC, all MnB
3+, MnB

4+ and MnA
2+ions contribute to 

the total magnetic moment μtot(Mn) [8]:

(S5)2 3 4
2 2 2

tot 1 2 3Mn Mn Mn
(Mn) ,x x x          

where x1, x2 and x3 are the concentrations of the MnA
2+, MnB

3+, and MnB
4+ ions, respectively. 

The magnetic moments MnB
3+(3d4) with a spin S = 2 and MnB

4+(3d3) with a spin S = 3/2 

equal  and , respectively [9]. Since MnA
2+(3d5) is in the cluster, 3 BMn

4.90   4 BMn
3.87  

its magnetic moment depends on the overlap of the electronic orbits between its nearest 

neighbours and may differ from the magnetic moment of a free ion. The appearance of 

clustered MnA
2+ manganese can be represented as a disproportionate reaction [10],

2 MnB
3+ = MnA

2+ + MnB
4+,
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from which, the value of the magnetic moment for clustered MnA
2+ 2 BMn

5.75  

manganese is calculated. This agrees well with the experimental values 5.2–5.96µB for a free 

ion [11]. According to the electroneutrality principle, the molar formula of non-

stoichiometric La0.6Ag0.2Mn1.2O3 composition can be written as 

 with concentrations x1 = 0.167, x2 = 0.333 and x3 = 0.5. 3 1 2 3 4 2
0.6 0.2 0.2 0.4 0.6 3{La Ag Mn } [Mn Mn ] OA B
     

From Equation (S5), the total magnetic moment of manganese μtot(Mn) = 4.58µB was 

calculated for the La0.6Ag0.2Mn1.2O3 nanopowder. It is in satisfactory agreement with the 

experimental value µeff = 4.61µB obtained from the Curie–Weiss law (see figure 4). The 

coincidence of the calculated μtot and experimental µeff magnetic moments confirms the 

correctness of the structural position, valence, and magnetic states of manganese in the 

nanopowder of non-stoichiometric La0.6Ag0.2Mn1.2O3 composition.

Figure S5. Hysteresis curves at T = 2, 77, 300, and 400 K.

Table S4
Saturation magnetization MS, residual magnetization MR, and coercivity HC in the 
La0.6Ag0.2Mn1.2O3 nanopowder

MS MR
T (K)

emu/g emu/cm3 emu/g emu/cm3
HC (Oe)

2 69.7 426.8 7.5 46.6 172
77 65.9 403.4 4.9 30.4 109
300 34.1 208.8 1.1 6.8 51

ESI4
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Calculation of the main magnetic characteristics of the La0.6Ag0.2Mn1.2O3 composition 

for local hyperthermia

Soft MNPs have two critical sizes:  is the size of the single-domain (SD) state, SD
crD

and  is the size of the multidomain (MD) state. With an increase in D, the transition MD
crD

from SD to MD occurs through a vortex state (VS) (see figure S6) [12].

Figure S6. Spherical MNP with uniaxial magnetic anisotropy: uniform magnetization of the 
SD state (a); VS (b); MD state (c); the effect of magnetic field H on the magnetic moment M 
of a particle with uniaxial anisotropy (d).

The key role in the change in the magnetic state of the MNP is the energy balance 

between the exchange interaction energy Eex, the magnetic anisotropy energy Ema and the 

magnetostatic energy Ems [13]. The exchange interaction Eex establishes the magnetic order in 

materials. The magnetostatic energy Ems is a magnetic energy of a particle in its own 

demagnetization field. To reduce the contribution of Ems to the total energy, the FM material 

is divided into domains and goes into the MD state [14]. The magnetic anisotropy energy Ema 

directs the magnetization vector along the easy axis. An exchange hardness A is the main 

quantitative parameter of the exchange interaction and equals [12]:

(S6)
2

,exNJ SA
a


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where Jex is the exchange integral; N is the number of magnetic ions in the unit cell; S is the 

spin quantum number; and a is the lattice constant. For a simple cubic lattice with N = 1, the 

exchange integral Jexis related to the Curie temperature ТС as [15,16]:

(S7)B C3 ,
( 1)ex
k TJ

ZS S




where kB is the Boltzmann constant; and Z is the number of nearest neighbours (for a simple 

cubic lattice Z = 6). The quantitative parameter of the magnetic anisotropy is the 

magnetocrystalline anisotropy constant K1, which for hexagonal crystals with uniaxial 

magnetic anisotropy are related to the energy Ema by the expression [12]:

Ema = K1Vsin2(θ),

where K1 is the uniaxial anisotropy constant, and θ is the angle between the magnetization 

and the direction of easy axis (see figure S6d).

The criterion for magnetic hardness is the parameter k. The parameter k shows how 

strong the contribution from the magnetic anisotropy energy Ema is compared with the 

contribution from the magnetostatic energy Ems [12]:

(S8)1
2

2 .
4 S

Kk
M



In Brown’s strict approach based on Kittel’s estimation approach [17-19], the criteria of 

magnetic hardness for spherical MNPs with uniaxial anisotropy are determined as:

k << 0.3562 for soft magnetic particles, (S9)

k ≥ 0.3562 for hard magnetic particles. (S10)
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The exchange length lex is a characteristic length that shows how strong or weak the 

contribution from the exchange energy Eex is compared with the contribution from the 

magnetostatic energy Ems [13,20]:

(S11)ex 2

2 .
4 S

Al
M



In the course of finding a balance between the energies of the particle in the SD and 

VS states, expressions for the critical sizes of the SD and MD states were obtained [13,17]:

(S12)
1/2

SD
cr 2

S

27.211 ,
4
AD
M

 
  

 

(S13)

1/2

2
SMD

cr
1

2
S

29.0584
4

.21 2.8075
4

A
M

D K
M





 
 
 

 

Substituting the  by from Equation (S11) and the hardness coefficient k 2/12 )4/2( SMA  exl

from Equation (S8) into Equation (S12) and (S13), one can receive that the MNP can be in 

one of the three states depending on the size D:

, for SD state, (S14)SD
cr ex7.211D D l  

, for VS state, (S15)SD MD
cr crD D D 

, for MD state. (S16)MD
cr ex

9.0584
1 2.8075

D D l
k

  
 

Using Equations (S6), (S7), (S8), (S11), (7) for the La0.6Ag0.2Mn1.2O3 nanopowder with an 

average particle size D0 = 65.3 nm, a Curie temperature ТС = 308 К, a saturation 
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magnetization MS = 426.8 emu/cm3 at Т = 2 K, a blocking temperature ТВ = 301 К, an 

effective anisotropy constant Keff = 7.123·103erg/cm3, and a magnetocrystalline anisotropy 

constant K1 = 9.5·103 erg/cm3, the main magnetic characteristics of the MNPs ensemble are 

determined.
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