ortho-Naphthoquinone-Catalyzed Aerobic Oxidation of Amines to Fused Pyrimidin-4(3H)-

 ones: A Convergent Synthetic Route to Bouchardatine and SildenafilKyeongha Kim, Hun Young Kim and Kyungsoo Oh*

Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea

Table of Contents

General Methods S2
2-Amino-aryl Benzamide Starting Materials S2
Aryl Amine Starting Materials S5
Preparation of ortho-Naphthoquinones Catalysts S6
General Procedure A for the Synthesis of Fused Pyrimidin-4(3H)-ones: S6
1.0 mmol Scale Reaction S6
Characterization of the Products in Table 1, Scheme 2 and 3 S7
Synthesis of Bouchardatine in Scheme 5 S17
Synthesis of Sildenafil in Scheme 5 S18
References S20
${ }^{1} H \&{ }^{13} C$ NMR Spectra S23

General Methods

All reactions were carried out with oven-dried glassware. The progress of all reactions was monitored by thin-layer chromatography on Dynamic Adsorbent, Inc. precoated silica gel plates ($250 \mu \mathrm{~m}$) and visualized by ultra-violet light or by staining with KMnO_{4} stain. HPLC grade solvents were used without further drying. Unless otherwise specified, all chemicals were purchased from Acros or Alfa Aesar or TCI and all solvents were purchased from Fischer Scientific. The microwave assisted reactions were carried out in Anton Paar microwave 400 synthesis reactor. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} and $\mathrm{DMSO}_{6} \mathrm{~d}_{6}$ on JEOL 600 MHz Fourier transform spectrometers at ambient temperature. The coupling constant J is given in Hz. The chemical shifts are reported in ppm on a scale downfield from TMS as an internal standard, and signal patterns are indicated as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. For high resolution mass spectrometry (HRMS), m / z ratios are reported as values in atomic mass units. Silica gel (32-64u, Dynamic Adsorbent, Inc.) was used for column chromatography. The infrared spectra were obtained using a Aglient Cary 630 FRIR Spectrometer. Melting points were recorded on a Buchi-B-450 melting point apparatus and the values were uncorrected.

2-Amino-aryl Benzamide Starting Materials

1a

1b

1c

1d

1e

$1 f$

1g

1k

11

1h

$1 i$

1 m

1n

$1 \mathbf{j}$

10

2-Amino-aryl benzamide $\mathbf{1 a - 1} \mathbf{c}, \mathbf{1 k}, \mathbf{1 n}$ and $\mathbf{1 0}$ are commercially available. The compounds $\mathbf{1} \mathbf{j}, \mathbf{1 1}$ are prepared according to literature procedure and the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were compared with previously reported literature data. ${ }^{1-2} \mathbf{1 d} \mathbf{- 1 i}$ and $\mathbf{1 m}$ were synthesized based on the literature procedure with slight modification. ${ }^{3-4}$

1) Synthesis of 2-Amino-aryl Benzamides (Method A for 1d, 1e, 1f and 1m)

Benzonitrile compounds (1.0 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (1.0 equiv) were added into a 10 mL microwave reaction vial and 8.5 mL of deionized water was added. After irradiation under microwave at $150^{\circ} \mathrm{C}$ for $25 \mathrm{~min}-2 \mathrm{~h}$, the reaction mixture was cooled down and concentrated under reduced pressure. The residue was dissolved in acetone, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: $2-5 \% \mathrm{MeOH}$ in DCM) to give $\mathbf{1 d - 1 f}, \mathbf{1 m}$ in $70-90 \%$ yields.

2) Synthesis of 2-Amino-aryl Benzamides (Method B for 1g-1i)

To a flask charged with anthranilic acid (1.0 mmol) and $1,1^{\prime}$-carbonyldiimidazole (1.0 equiv), was added 4 mL of anhydrous DMF under argon. The reaction was stirred at $40^{\circ} \mathrm{C}$ for 12 h . After cooling down to ambient temperature, amine (1.0 equiv) was added and reaction was further stirred for 2 h . The reaction mixture was extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$) and washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: 20% ethyl acetate in hexanes) to give $\mathbf{1 g}$ 1 i in 67-92\% yields.

3) Characterization of Aryl Benzamide Starting Materials:

2-Amino-5-methylbenzamide (1d): The product $\mathbf{1 d}$ was prepared by the Method A using 2-amino-5-methylbenzonitrile $(132.1 \mathrm{mg}, 1.0 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using $3 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. $130.4 \mathrm{mg}(80 \%)$; Pale yellow solid; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with the previously reported literature. ${ }^{5} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right): \delta 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J$
$=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 150 \mathrm{MHz}\right): \delta 171.3,147.8,132.7,128.6,122.7,116.5$, 113.7, 20.0.

2-Amino-4-chlorobenzamide (1e): The product $\mathbf{1 e}$ was prepared by the Method A using 2-amino-4-chlorobenzonitrile $(152.5 \mathrm{mg}, 1.0 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using $2 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. $153.5 \mathrm{mg}(90 \%)$; Pale yellow solid; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with the previously reported literature. ${ }^{6} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right): \delta 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 6.47 (dd, $J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 150 \mathrm{MHz}\right): \delta 170.4,151.5,136.3,130.6,115.1,114.0,112.4$.

2-Amino-4-methylbenzamide (1f): The product $\mathbf{1 f}$ was prepared by the Method A using 2-amino-4-methylbenzonitrile ($132.1 \mathrm{mg}, 1.0 \mathrm{mmol}$). The pure product was obtained by column chromatography on silica gel using $3 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. $112.5 \mathrm{mg}(75 \%)$; White solid; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with the previously reported literature. ${ }^{71} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\left.{ }_{6}, 600 \mathrm{MHz}\right): \delta 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 150 \mathrm{MHz}\right): \delta 171.2,150.3,141.6,128.8,116.4,115.6,111.1,21.0$.

2-Amino-N-methylbenzamide (1g): The product $\mathbf{1 g}$ was prepared by the Method B using anthranilic acid ($137.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) and methyl amine ($40 \mathrm{wt} \%$ solution in water, $83 \mu \mathrm{~L}, 1.0 \mathrm{mmol}$). The pure product was obtained by column chromatography on silica gel using 20% ethyl acetate in hexanes as eluent. $100.6 \mathrm{mg}(67 \%)$; White solid; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with the previously reported literature. ${ }^{8}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.27-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.61(\mathrm{~m}$, $2 \mathrm{H}), 6.15(\mathrm{~s}, 1 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 2.94(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 170.1,148.7,132.3,127.2$, 117.4, 116.7, 116.4, 26.6.

2-Amino-N-benzylbenzamide (1h): The product $\mathbf{1 h}$ was prepared by the Method B using anthranilic acid ($137.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) and benzylamine $(109 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% ethyl acetate in hexanes as eluent. $203.6 \mathrm{mg}(90 \%)$; White solid; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with the previously reported literature. ${ }^{8}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.37-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.61-6.63(\mathrm{~m}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 169.3$,
$149.0,138.4,132.5,128.9,127.9,127.6,127.2,117.5,116.7,115.9,43.8$.

2-Amino-N-phenylbenzamide (1i): The product $\mathbf{1 i}$ was prepared by the Method B using anthranilic acid ($137.1 \mathrm{mg}, 1.0 \mathrm{mmol}$) and aniline $(91 \mu \mathrm{~L}, 1.0 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% ethyl acetate in hexanes as eluent. 195.2 mg (92\%); White solid; The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with the previously reported literature. ${ }^{8}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.71(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $150 \mathrm{MHz}): \delta 167.7,149.1,138.0,132.9,129.2,127.3,124.6,120.7,117.7,117.0,116.4$.

2-Aminobenzo[b]thiophene-3-carboxamide (1m): The product $\mathbf{1 m}$ was prepared by the Method A using 2-aminobenzo[b]thiophene-3-carbonitrile ($174.22 \mathrm{mg}, 1.0 \mathrm{mmol}$). The pure product was obtained by column chromatography on silica gel using $5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as eluent. 134.5 mg (70\%); White solid, m.p. $188-191{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 7.67(\mathrm{~s}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(\mathrm{DMSO}-\mathrm{d} 6,150 \mathrm{MHz}): \delta$ $167.8,161.6,137.1,128.7,124.8,121.7,120.8,119.9,100.8$. IR (neat): $3470,3391,3265,3162,2937,2855,1638$, $1576,1466 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{9} \mathrm{H}_{5} \mathrm{NOS}\left[\mathrm{M}-\mathrm{NH}_{3}\right]^{+} 176.0164$ Found 176.0169 .

Aryl Amine Starting Materials:

All of aryl amine substrates are commercially available except 2r. For the synthesis of 2r, please refer to the following
sildenafil synthesis section.

Preparation of ortho-Naphthoquinones Catalysts:

ortho-Naphthoquinone catalysts were prepared by the previously reported method. ${ }^{9}$

General Procedure A for the Synthesis of Fused Pyrimidin-4(3H)-ones:

To a dried flask charged with catalyst o-NQ1 ($0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$), aryl benzamide (0.2 mmol), aryl benzylamine (0.24 mmol) were added 1.0 mL of DMSO followed by TFA $(0.04 \mathrm{mmol}, 20 \mathrm{~mol} \%)$. The reaction was stirred under O_{2} balloon at $100-120^{\circ} \mathrm{C}$ for $12-36 \mathrm{~h}$. The reaction mixture was cooled down to ambient temperature, diluted with 10 mL of water, and extracted with ethyl acetate (10 mL x 3). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $30-40 \%$ acetone in hexanes or $20-40 \%$ ethyl acetate in hexanes) to give the desired products 4a4zh in $23-97 \%$ yields.

1.0 mmol Scale Reaction

To a dried flask charged with catalyst \boldsymbol{o}-NQ1 $(11.7 \mathrm{mg}, 0.05 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, benzamide ($136.2 \mathrm{mg}, 1.0 \mathrm{mmol}$), benzylamine ($131 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) were added 5.0 mL of DMSO followed by TFA ($15 \mu \mathrm{~L}, 0.2 \mathrm{mmol}, 20 \mathrm{~mol} \%$). The reaction was stirred under O_{2} balloon at $100^{\circ} \mathrm{C}$ for 36 h . The reaction mixture was cooled down to ambient temperature, diluted with 20 mL of water, and extracted with ethyl acetate ($20 \mathrm{~mL} \times 3$). The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: 30% Acetone in hexanes) to give the desired product $\mathbf{6 a}$ in 85% yield (186 mg).

Characterization of the Products in Table 1, Scheme 2 and 3

2-Phenyl-2,3-dihydroquinazolin-4(1H)-one (3a): The product 3a was prepared by the General Procedure $\mathrm{A}\left(\mathrm{CH}_{3} \mathrm{CN}\right.$ was used as solvent instead of DMSO) using $1 \mathbf{1 a}(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $35.8 \mathrm{mg}(80 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{10}{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($\mathrm{DMSO}_{-} \mathrm{d}_{6}, 600 \mathrm{MHz}$): $\delta 8.27(\mathrm{~s}, 1 \mathrm{H})$, 7.60-7.59 (m, 1H), 7.47-7.48 (m, 2H), 7.39-7.32 (m, 3H), 7.21-7.24 (m, 1H), $7.10(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.64-6.67 (m, 1H), $5.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 150 \mathrm{MHz}\right): \delta 163.5,147.8,141.6,133.3,128.4,128.3,127.3$, $126.8,117.1,114.9,114.4,66.5$.

2-Phenylquinazolin 4(3H)-one (4a): The product 4a was prepared by the General Procedure A using 1a ($27.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 2a ($26 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$). The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $41 \mathrm{mg}(93 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{11}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 11.73(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.25-8.27(\mathrm{~m}, 2 \mathrm{H}), 7.85-7.80(\mathrm{~m}, 2 \mathrm{H})$, 7.58-7.59 (m, 3H), 7.50-7.52 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 164.1,151.9,149.7,135.0,133.0,131.8,129.2$, $128.2,127.6,126.9,126.5,121.0$

2-(p-Tolyl)quinazolin-4(3H)-one (4b): The product 4b was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 b}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% ethyl acetate in hexanes as eluent. 46 mg (97%); white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{12}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 600 \mathrm{MHz}\right): \delta 12.45(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.09(\mathrm{~m}$, $2 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.33(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d ${ }_{6}$, $150 \mathrm{MHz}): \delta 162.3,152.2,148.8,141.4,134.5,129.9,129.1,127.7,127.3,126.3,125.8,120.9,21.0$.

2-(4-(tert-Butyl)phenyl)quinazolin-4(3H)-one (4c): The product $\mathbf{4 c}$ was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 c}(42 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. $47 \mathrm{mg}(84 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this
compound are consistent with previously reported literature data. ${ }^{141} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 11.43(\mathrm{~s}, 1 \mathrm{H}), 8.35$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.18-8.20(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=7.2 \mathrm{H}, 1 \mathrm{H}), 7.79(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.50(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 163.9,155.4,151.9,149.9,134.9,130.2,128.2,127.3$, 126.7, 126.5, 126.2, 121.1, 35.2, 31.3.

2-(4-Methoxyphenyl)quinazolin-4(3H)-one (4d): The product $\mathbf{4 d}$ was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 d}(31 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% ethyl acetate in hexanes as eluent. $46 \mathrm{mg}(92 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{12}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right): \delta 12.40(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.18(\mathrm{~m}, 2 \mathrm{H}), 8.12$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.08(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right): \delta 162.4,161.8,151.9,148.9,134.5,129.4,127.2,126.1,125.8,124.8,120.7,114.0$, 55.4.

2-(4-Chlorophenyl)quinazolin-4(3H)-one (4e): The product $\mathbf{4 e}$ was prepared by the General Procedure A using 1a ($27.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 e}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30\% acetone in hexanes as eluent. 38 mg (75%); white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{12}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}^{6}, 600 \mathrm{MHz}\right): \delta 12.60(\mathrm{~s}, 1 \mathrm{H}), 8.18-8.20(\mathrm{~m}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO- $\mathrm{d}_{6}, 150 \mathrm{MHz}$): $\delta 162.2,151.4,148.5,136.3,134.7,131.5,129.6,128.7,127.5,126.8,125.9,121.0$.

2-(4-Bromophenyl)quinazolin- $\mathbf{4 (3 H)}$-one (4f): The product $\mathbf{4 f}$ was prepared by the General Procedure A using 1a ($27.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 f}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $35 \mathrm{mg}(58 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{13}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.34(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.16(\mathrm{~m}, 3 \mathrm{H}), 7.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.72-7.74 (m, 3H), $7.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 150 \mathrm{MHz}\right): \delta 161.7,151.2,148.2,134.1,131.7$, $131.1,129.4,127.0,126.2,125.4,124.7,120.7$.

2-(\boldsymbol{m}-Tolyl)quinazolin- $\mathbf{4 (3 H) - o n e (4 g) : ~ T h e ~ p r o d u c t ~} \mathbf{4 g}$ was prepared by the General Procedure A using $\mathbf{1 a}(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 g}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. 42 mg (90%) white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{13}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.46(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.14(\mathrm{~m}, 1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 150 \mathrm{MHz}$): $\delta 162.2,152.3,148.8,137.9,134.5,132.6,132.0,128.5,128.3,127.5,126.5,125.8,124.9$, 121.0, 20.9.

2-(3-Methoxyphenyl)quinazolin-4(3H)-one (4h): The product 4h was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 h}(31 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. 43 $\mathrm{mg}(83 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{10} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right): \delta 12.52(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.78-7.82 (m, 2H), 7.72-7.74 (m, 2H), 7.48-7.51 (m, 1H), 7.42-7.44 (m, 1H), 7.18-7.13 (m, 1H), $3.85(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right): \delta 162.5,159.3,152.2,148.7,134.5,134.2,129.7,127.4,126.5,125.8,121.0,120.1$, $117.5,112.5,55.4$.

2-(3-Chlorophenyl)quinazolin-4(3H)-one (4i): The product $\mathbf{4 i}$ was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 i}(29 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. 49 $\mathrm{mg}(91 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{131} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right): \delta 12.36(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.16(\mathrm{~m}$, $2 \mathrm{H}), 7.81-7.84(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right.$, $150 \mathrm{MHz}): \delta 161.7,150.8,148.1,134.6,134.0,133.1,130.6,129.9,127.1,127.0,126.3,126.0,125.4,120.8$.

2-(o-Tolyl)quinazolin-4(3H)-one (4j): The product $\mathbf{4 j}$ was prepared by the General Procedure A using $\mathbf{1 a}(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 j}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. $38 \mathrm{mg}(81 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature
data. ${ }^{13}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-}, 600 \mathrm{MHz}\right): \delta 12.44(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.67-7.68(\mathrm{~m}$, 1H), 7.54-7.49 (m, 2H), 7.40-7.43(m, 1H), 7.30-7.34(m, 2H), $2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta 161.8$, $154.3,148.7,136.1,134.4,134.2,130.5,129.9,129.1,127.3,126.6,125.8,125.7,121.0,19.5$.

2-(2-Chlorophenyl)quinazolin- $\mathbf{4 (\mathbf { 3 H }) - o n e (4 k) : ~ T h e ~ p r o d u c t ~} \mathbf{4 k}$ was prepared by the General Procedure A using 1a ($27.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 k}(29 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. 40 $\mathrm{mg}(79 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{12}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 10.24(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.54$ $(\mathrm{m}, 2 \mathrm{H}), 7.47-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.46(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 162.1,151.1,149.1,135.0,132.8$, $132.2,132.0,131.6,130.8,128.2,127.7,127.6,126.7,121.3$.

2-(2-Fluorophenyl)quinazolin-4(3H)-one (4I): The product $\mathbf{4 I}$ was prepared by the General Procedure A using $1 \mathbf{1 a}(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 1}(27 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. 35 $\mathrm{mg}(83 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{15}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 10.07(\mathrm{~s}, 1 \mathrm{H}), 8.36-8.33(\mathrm{~m}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.81$ $(\mathrm{m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=12.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 162.0$, $160.9(\mathrm{~d}, J=248.6 \mathrm{~Hz}), 149.1,148.4,134.9,133.7(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 131.5,128.2,127.4,126.7,125.4,121.4,120.2(\mathrm{~d}$, $J=8.6 \mathrm{~Hz}), 116.8(\mathrm{~d}, J=23.1 \mathrm{~Hz})$.

2-(3,5-Dimethoxyphenyl)quinazolin-4(3H)-one (4m): The product $\mathbf{4 m}$ was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 m}(40 \mathrm{mg}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $34 \mathrm{mg}(60 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{131} \mathrm{H}-\mathrm{NMR}$ ($\mathrm{DMSO}_{-\mathrm{d}}^{6}, 600 \mathrm{MHz}$): $\delta 12.49(\mathrm{~s}, 1 \mathrm{H}), 8.13-8.14$ $(\mathrm{m}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.38(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.68(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 150 \mathrm{MHz}\right): \delta 162.2,160.5,151.9,148.5,134.5,127.5,126.6,125.8,121.0,105.5$ (2C), 103.8, 55.5.

2-(Naphthalen-1-yl)quinazolin-4(3H)-one (4n): The product $\mathbf{4 n}$ was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 n}(36 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. 37 mg (66%); white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{12}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.\mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.67(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10-8.12(\mathrm{~m}, 1 \mathrm{H}), 8.03-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.87(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.79(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.73(\mathrm{~m}$, $1 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 150 \mathrm{MHz}\right): \delta 161.9,153.7,148.7,134.5,133.1$, 131.7, 130.4, 130.2, 128.3, 127.7, 127.5, 127.1, 126.8, 126.4, 125.8, 125.2, 125.1, 121.2.

2-(Furan-2-yl)quinazolin-4(3H)-one (4o): The product 40 was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 o}(23 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. 23 $\mathrm{mg}(54 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{13}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.50(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.78(\mathrm{~m}, 1 \mathrm{H})$, 7.67-7.68 (m, 1H), 7.61-7.62 (m, 1H), $7.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right):$ $\delta 161.2,148.5,146.1,146.0,143.8,134.2,127.0,126.1,125.6,121.0,114.1,112.2$.

2-(Thiophen-2-yl)quinazolin- $\mathbf{4 (3 H)}$-one ($\mathbf{4 p}$): The product $\mathbf{4 p}$ was prepared by the General Procedure A using 1a $(27.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 p}(25 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. 35 $\mathrm{mg}(75 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{131} \mathrm{H}-\mathrm{NMR}\left(\right.$ DMSO- $\left._{6}, 600 \mathrm{MHz}\right): \delta 12.65(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~m}, 1 \mathrm{H}), 8.12-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.86(\mathrm{~m}, 1 \mathrm{H})$, 7.81-7.78 (m, 1H), 7.63-7.64 (m, 1H), 7.46-7.48 (m, 1H), 7.21-7.23 (m, 1H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta$ $161.8,148.6,147.8,137.3,134.7,132.1,129.4,128.5,126.9,126.3,126.0,120.8$.

6-Chloro-2-phenylquinazolin- $\mathbf{4 (\mathbf { 3 H }) - \text { one }} \mathbf{(4 q)}$: The product $\mathbf{4 q}$ was prepared by the General Procedure A using 1b $(34.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30\% acetone in hexanes as eluent. $43 \mathrm{mg}(84 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{14}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 600 \mathrm{MHz}\right): \delta 12.70(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.16(\mathrm{~m}, 2 \mathrm{H}), 8.06-8.07$
$(\mathrm{m}, 1 \mathrm{H}), 7.83-7.85(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150\right.$ $\mathrm{MHz}): \delta 161.3,152.9,147.4,134.7,132.5,131.6,130.7,129.7,128.6,127.8,124.9,122.2$.

6-Chloro-2-(p-tolyl)quinazolin-4(3H)-one (4r): The product $\mathbf{4 r}$ was prepared by the General Procedure A using $\mathbf{1 b}(34.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 b}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $45 \mathrm{mg}(83 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{12}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6},{ }_{6} 60 \mathrm{MHz}\right): \delta 12.25(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.09(\mathrm{~m}, 3 \mathrm{H}), 7.79-$ $7.81(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.35(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta 160.9,152.5$, 147.2, 141.2, 134.1, 130.2, 129.4, 129.1, 128.7, 127.4, 124.5, 121.8, 20.5.

6-Chloro-2-(3-methoxyphenyl)quinazolin-4(3H)-one (4s): The product 4s was prepared by the General Procedure A using 1b ($34.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 h}(30 \mu \mathrm{~L}, 0.24$ $\mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. 43 mg (74\%); white solid, m.p. $278-279{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\left.\mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.38(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~s}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.87$ (s, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}, 150 \mathrm{MHz}\right): \delta 160.7,159.1,152.3,146.9,134.0,133.5,130.3,129.1(2), 129.0(5), 124.4$, 121.9, 119.8, 117.3, 112.6, 55.1; IR(neat): 3175, 3034, 2922, 2844, 1677, 1580, 1463, 1287, $1237 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 287.0581$ Found 287.0591.

6-Fluoro-2-phenylquinazolin-4(3H)-one (4t): The product $4 t$ was prepared by the General Procedure A using $\mathbf{1 c}(30.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. 32 mg (67\%); white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{10}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{\mathrm{d}}, 600 \mathrm{MHz}\right): \delta 12.60(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.16(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 2 \mathrm{H})$, 7.68-7.72 (m, 1H), 7.52-7.59 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 151 \mathrm{MHz}\right): \delta 161.7,159.9(\mathrm{~d}, J=243.0 \mathrm{~Hz}), 151.9,145.6$, $132.6,131.4,130.2(\mathrm{~d}, J=4.4 \mathrm{~Hz}), 128.6,127.7,123.0(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 122.1(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 110.5(\mathrm{~d}, J=23.0 \mathrm{~Hz})$.

6-Fluoro-2-(p-tolyl)quinazolin-4(3H)-one (4u): The product $\mathbf{4 u}$ was prepared by the General Procedure A using 1c ($30.8 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 b}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in
hexanes as eluent. $32 \mathrm{mg}(63 \%)$; white solid, m.p. $275-277{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.58(\mathrm{~s}, 1 \mathrm{H}), 8.05-$ $8.07(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right):$ $\delta 162.3,160.4(\mathrm{~d}, J=244.1), 152.3,146.2,142.0,130.7(\mathrm{~d}, J=5.7 \mathrm{~Hz}), 130.3,129.7,128.2,123.5(\mathrm{~d}, J=24.5 \mathrm{~Hz})$, $122.6(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 111.0(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 21.5$; $\operatorname{IR}($ neat $): 3186,3030,2937,1653,1343,1280 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$255.0928 Found 255.0930.

6-Methyl-2-(p-tolyl)quinazolin-4(3H)-one (4v): The product $\mathbf{4 v}$ was prepared by the General Procedure A using $1 \mathbf{d}(30.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 b}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. $40 \mathrm{mg}(80 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{16}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-}{ }_{6}, 600 \mathrm{MHz}\right): \delta 12.15(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.94(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right):$ $\delta 161.8,151.2,146.5,140.8,135.6,135.3,129.8,128.7,127.2,126.8,124.9,120.4,20.5,20.4$.

7-Chloro-2-(p-tolyl)quinazolin-4(3H)-one (4w): The product $\mathbf{4 w}$ was prepared by the General Procedure A using $1 \mathbf{e}(30.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 b}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $33 \mathrm{mg}(61 \%)$; white solid, m.p. $313-314{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.23(\mathrm{~s}, 1 \mathrm{H}), 8.08-$ $8.13(\mathrm{~m}, 3 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.35(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta$ $161.1,153.4,149.5,141.3,138.6,129.3,128.6,127.4,127.3,125.9,125.8,119.3,20.4$; $\operatorname{IR}($ neat $): 3190,2918,2864$, 1673, 1556, $1479 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 271.0632$ Found 271.0639.

7-Methyl-2-(p-tolyl)quinazolin-4(3H)-one (4x): The product $\mathbf{4 x}$ was prepared by the General Procedure A using 1f ($30.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 b}(30 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. 38 mg (76\%); white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{17}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.18(\mathrm{~s}, 1 \mathrm{H}), 8.07-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.02$ $(\mathrm{d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 3 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta$ $161.8,152.0,148.7,144.6,141.0,129.8,128.8,127.4,127.3,126.8,125.4,118.3,21.0,20.6$.

3-Methyl-2-phenylquinazolin- $\mathbf{4 (3 H)}$-one (4y): The product $\mathbf{4 y}$ was prepared by the General Procedure A using $\mathbf{1 g}(30.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% ethyl acetate in hexanes as eluent. $41 \mathrm{mg}(88 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{18}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 8.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}$, $6 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 162.9,156.3,147.5,135.5,134.4,130.2,129.0,128.1,127.6,127.1$, 126.8, 120.7, 34.4.

3-Benzyl-2-phenylquinazolin-4(3H)-one (4z): The product $\mathbf{4 z}$ was prepared by the General Procedure A using $\mathbf{1 h}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% ethyl acetate in hexanes as eluent. $58 \mathrm{mg}(93 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{19}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 8.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.52(\mathrm{~m}$, $1 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.92-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 162.6,156.5,147.4,136.7,135.4,134.7,130.0,128.7,128.6,128.1,127.7,127.5$, 127.3, 127.2, 127.1, 121.0, 48.9.

2,3-Diphenylquinazolin- $\mathbf{4 (3 H)}$-one (4za): The product 4za was prepared by the General Procedure A using $\mathbf{1 i}(42.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% ethyl acetate in hexanes as eluent. $57 \mathrm{mg}(95 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{18}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 8.36(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.14-7.34(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 162.4,155.3,147.6,137.8,135.6,134.9,129.4,129.2$, 129.1(2C), 128.5, 128.1, 127.9, 127.4, 127.3, 121.1.

2-Phenylbenzo[g]quinazolin- $\mathbf{4 (3 H)}$-one ($\mathbf{(4 z b}$): The product $\mathbf{4 z b}$ was prepared by the General Procedure A using $\mathbf{1 j}$ ($37 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. $25 \mathrm{mg}(46 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, 600 \mathrm{MHz}\right): \delta 12.20(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H})$,
8.22-8.24(m, 2H), $8.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (DMSO- $\left.\mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta 162.4,151.1,143.9,136.2,132.8,131.0,130.7,129.0,128.3,128.2,127.5,127.4$, $127.0,125.9,124.6,119.9$.

2-Phenylpyrido[2,3-d]pyrimidin-4(3H)-one (4zc): The product $\mathbf{4 z c}$ was prepared by the General Procedure A using $\mathbf{1 k}(27.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $41 \mathrm{mg}(92 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{20}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.82(\mathrm{~s}, 1 \mathrm{H}), 8.95-8.96(\mathrm{~m}, 1 \mathrm{H}), 8.52-8.51(\mathrm{~m}, 1 \mathrm{H})$, 8.20-8.21 (m, 2H), 7.60-7.63 (m, 1H), 7.55-7.57 (m, 2H), 7.51-7.53 (m, 1H), ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}^{2} \mathrm{~d}_{6}, 150 \mathrm{MHz}\right): \delta$ 163.0, 158.7, 156.1, 155.4, 135.5, 132.4, 131.9, 128.7, 128.1, 122.2, 116.2.

2-Phenylpyrimido[4,5-b]quinolin-4(3H)-one (4zd): The product 4zd was prepared by the General Procedure A using $11(37.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using $3 \% \mathrm{MeOH}$ in DCM as eluent. $13 \mathrm{mg}(23 \%)$; Yellow solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{2}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 600 \mathrm{MHz}\right): \delta 12.40(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}), 8.29-8.30(\mathrm{~m}, 2 \mathrm{H})$, 8.22-8.24 (m, 1H), 8.07-8.09(m, 1H), 7.91-7.93(m, 1H), 7.58-7.65 (m, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 150 \mathrm{MHz}\right): \delta$ $163.2,155.9,155.8,150.8,137.6,132.6,132.2,131.5,129.0,128.2,128.0,127.8,125.9(2 \mathrm{C}), 115.2$.

2-Phenylbenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (4ze) : The product 4zf was prepared by the General Procedure A using $\mathbf{1 m}(38.4 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}, 0.24$ mmol). The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. $37.8 \mathrm{mg}(68 \%)$; white solid, m.p. $322-323{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 600 \mathrm{MHz}$): $\delta 12.62$ $(\mathrm{s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.48(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ (DMSO-d ${ }_{6}, 150 \mathrm{MHz}$): $\delta 166.0,157.9,154.7,134.6,133.2,131.5,131.2,128.1,127.5,125.5,125.1,123.4,122.1$, 115.4; IR(neat): $3086,2972,2933,2864,1662,1533,1448 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OS}[M]^{+}$ 279.0586 Found 279.0594.

2-Phenyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3- $\boldsymbol{d}]$ pyrimidin-4(3H)-one (4zf): The product 4zf was prepared by the General Procedure A using $\mathbf{1 n}(39.2 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 2a $(26 \mu \mathrm{~L}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. $24.2 \mathrm{mg}(43 \%)$; white solid, m.p. 294-295 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO-d $\mathrm{d}_{6}, 600$ $\mathrm{MHz}): \delta 12.22(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.12(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.49(\mathrm{~m}, 3 \mathrm{H}), 2.92-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.77(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.77(\mathrm{~m}$, 4H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}_{-} \mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta 162.7,158.3,151.8,132.1,131.8,130.7,130.5,128.1,127.2,120.6,24.9$, 24.2, 22.2, 21.4; IR(neat): $3076,2933,2858,1653,1533,1483,1284 \mathrm{~cm}^{-1}$; HRMS (ESI): m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{OS}$ $[\mathrm{M}+\mathrm{H}]^{+}$283.0899 Found 283.0906 .

1-Methyl-5-phenyl-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one (4zg): The product $\mathbf{4 z g}$ was prepared by the General Procedure A using $10(36.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathbf{2 a}(26 \mu \mathrm{~L}$, 0.24 mmol). The pure product was obtained by column chromatography on silica gel using 30% acetone in hexanes as eluent. $37 \mathrm{mg}(70 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{141} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}^{2} \mathrm{~d}_{6}, 600 \mathrm{MHz}\right): \delta 12.13(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.07(\mathrm{~m}$, $2 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 4.15(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.76-1.82(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
(DMSO-d $\left.{ }_{6}, 150 \mathrm{MHz}\right): \delta 154.2,149.8,144.8,137.7,132.7,130.1,128.0,127.1,124.2,37.4,26.8,21.1,13.3$.

5-(2-ethoxyphenyl)-1-methyl-3-propyl-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one (4zh):
The product 4zh was prepared by the General Procedure A using $10(36.8 \mathrm{mg}, 0.2 \mathrm{mmol})$ and
$\mathbf{2 q}(36 \mathrm{mg}, 0.24 \mathrm{mmol})$. The pure product was obtained by column chromatography on silica gel using 20% acetone in hexanes as eluent. $40 \mathrm{mg}(80 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{21}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 11.11(\mathrm{~s}, 1 \mathrm{H}), 8.44-$ $8.46(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.28(\mathrm{~m}, 5 \mathrm{H}), 2.92(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 1.83-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 156.6$, $154.0,148.5,146.7,138.8,132.5,131.2,124.6,121.9,120.3,113.0,65.4,38.3,27.9,22.5,14.8,14.2$.

2-(Quinolin-2-yl)quinazolin-4(3H)-one (6): The product 6 was prepared by the General Procedure A (140 mol\% of TFA, $\left.120^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ using 1a ($27.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) and $\mathbf{2 t}(36$ $\mathrm{mg}, 0.24 \mathrm{mmol}$). The pure product was obtained by column chromatography on silica gel using 20% ethyl acetate in hexanes as eluent. $34 \mathrm{mg}(60 \%)$; White solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this
compound are consistent with previously reported literature data. ${ }^{22}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 11.17(\mathrm{~s}, 1 \mathrm{H}), 8.61$ $(\mathrm{d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{dd}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{t}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 161.6,149.3$, $149.1,148.2,146.9,137.8,134.7,130.6,129.8,129.4,128.4,128.4,127.9,127.7,126.9,122.8,118.6$.

Synthesis of Bouchardatine in Scheme 5

2-(1H-Indol-2-yl)quinazolin-4(3H)-one (5): The intermediate compound 8 was prepared by the General Procedure $\mathrm{A}\left(120^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ using 1a $(54 \mathrm{mg}, 0.4 \mathrm{mmol})$ and $\mathbf{2 s}(29 \mathrm{mg}, 0.2$ mmol). The residue was purified by column chromatography on silica gel (eluent: 20% ethyl acetate in hexanes) to give the desired products $5\left(35 \mathrm{mg}, 70 \%\right.$ yield). Yellow solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{23}{ }^{1} \mathrm{H}-\mathrm{NMR}$ (DMSO- $\mathrm{d}_{6}, 600 \mathrm{MHz}$): $\delta 12.60(\mathrm{~s}, 1 \mathrm{H}), 11.79(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}, 150 \mathrm{MHz}\right): \delta$ $161.8,148.7,146.6,137.7,134.7,130.0,127.4,126.9,126.3,126.1,124.1,121.5,121.2,120.0,112.4,105.0$.

Bouchardatine (2-(4-Oxo-3,4-dihydroquinazolin-2-yl)-1H-indole-3-carbaldehyde): To
 a flask charged with a mixture of $5(0.2 \mathrm{mmol}, 52 \mathrm{mg})$ and $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mol} \%)$ in DMF were added $37 \% \mathrm{HCHO}$ solution in water $(0.2 \mathrm{mmol}, 16 \mu \mathrm{~L})$ and $28-30 \% \mathrm{NH}_{3}$ solution in water ($0.4 \mathrm{mmol}, 27 \mu \mathrm{~L}$). The reaction was stirred at $130^{\circ} \mathrm{C}$ under air for 8 h . The reaction mixture was cooled down to ambient temperature and diluted with 5 mL of brine. The 0.5 mL of 0.5 M HCl was added to the mixture. The reaction mixture was further stirred for 30 min and extracted with ethyl acetate ($10 \mathrm{~mL} \times 5$), washed with saturated
$\mathrm{NaHCO}_{3}(10 \mathrm{~mL} x 2)$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: 5\% ethyl acetate in DCM) to give the desired product Bouchardatine in 65% yield (36 mg). The pure product was obtained by column chromatography on silica gel using $5 \% \mathrm{MeOH}$ in DCM as eluent. 36 mg (65\%); Yellow solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{23}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6} \mathrm{~d}_{6}, 600 \mathrm{MHz}\right): \delta 13.60(\mathrm{~s}, 1 \mathrm{H}), 13.10(\mathrm{~s}, 1 \mathrm{H}), 10.46(\mathrm{~s}, 1 \mathrm{H})$, $8.25(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.92-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.58-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.34(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{DCMSO}_{6} \mathrm{~d}_{6}, 150 \mathrm{MHz}\right): \delta 187.5,161.2$, $148.4,145.3,135.8,135.7,134.9,127.6,127.5,127.4,126.1,125.4,123.2,121.8,120.2,115.1,113.3$.

Synthesis of Sildenafil in Scheme 5

1) Synthesis of Benzyamine Derivative 2r

Step 1: To a flask charged with 3 mL of chlorosulfonic acid and 1 mL of Thionyl chloride was added 2ethoxybenzamide $(1.65 \mathrm{~g}, 10 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred for 12 h below $20^{\circ} \mathrm{C}$. After reaction was complete by TLC, the reaction mixture was poured into chopped ice and the resulting product was extracted with dichloromethane ($50 \mathrm{~mL} x 2$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The crude product was dissolved in 20 mL of dry dichloromethane and 1-methylpiperazine ($2.44 \mathrm{~mL}, 20 \mathrm{mmol}$) was added to the mixture. The reaction was stirred for 30 min at $0^{\circ} \mathrm{C}$ and then continued to stir at ambient temperature for 1 h . After the reaction was complete by TLC, 10 mL of water and 20 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ were added, respectively.

The reaction mixture was extracted with DCM , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure. The desired product was purified by recrystallization in diethyl ether to give 2r-Benzamide in 43% yield.

2r-Benzamide (2-Ethoxy-5-((4-methylpiperazin-1-yl)sulfonyl)benzamide): White solid, m.p. 199-200 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 8.58(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.26-4.29(\mathrm{~m}, 2 \mathrm{H}), 2.92-3.16(\mathrm{~m}, 4 \mathrm{H})$, 2.38-2.54 (m, 4H), $2.25(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.56(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 165.3,160.3$, $133.0,132.9,128.1,121.7,112.7,65.8,54.1,46.1,45.8,14.8$; IR(neat): $3451,3177,2855,2808,1673,1587,1343$, $1155 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 328.1325$ Found 328.1338.

Step 2: To a solution of 2r-Benzamide ($1.34 \mathrm{~g}, 4.1 \mathrm{mmol})$ in $\mathrm{DCM}(8 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}(2.28 \mathrm{~mL}, 16.4 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon. After 5 min , trifluoroacetic anhydride ($1.27 \mathrm{~mL}, 9.0 \mathrm{mmol}$) was added dropwise. The reaction was stirred for 7 h at ambient temperature. The reaction mixture was diluted with $\mathrm{DCM}(15 \mathrm{~mL})$ and saturated NaHCO_{3} aqueous solution (5 mL) was added. After extracting with DCM , the combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The desired product was purified by column chromatography on silica gel (eluent: $5 \% \mathrm{MeOH}$ in DCM) to provide 2 r-Nitrile in 90% yield.

2r-Nitrile (2-Ethoxy-5-((4-methylpiperazin-1-yl)sulfonyl)benzonitrile): Pale Yellow solid, m.p. $131-132{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.90(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.22(\mathrm{~m}, 2 \mathrm{H}), 2.80-3.16(\mathrm{~m}, 4 \mathrm{H}), 2.34-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{~s}$, 3H), 1.47-1.49 (m, 3H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 163.5,134.0,133.7,127.8,114.8,112.4$, 102.9, 65.8, 53.9, 46.0, 45.7, 14.3; IR(neat): 2991, 2804, 2228, 1590, 1490, 1334, $1133 \mathrm{~cm}^{-1} ;$ HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$310.1219 Found 310.1230.

Step 3: 2r-Nitrile ($0.62 \mathrm{~g}, 2.0 \mathrm{mmol}$) was dissolved in the mixture of $\mathrm{MeOH}(10 \mathrm{~mL})$ and conc. $\mathrm{HCl}(0.8 \mathrm{~mL})$ and $10 \% \mathrm{Pd} / \mathrm{C}(120 \mathrm{mg})$ was added at ambient temperature under argon. The reaction atmosphere was then changed from argon to hydrogen and the solution was stirred for 48 h . After which, the reaction mixture was basified by adding the 1 M NaOH solution $(20 \mathrm{~mL})$ and diluted with ethyl acetate $(30 \mathrm{~mL})$ and filtered through Celite. The filtrate was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: $3 \% \mathrm{NH}_{4} \mathrm{OH}+15 \% \mathrm{CH}_{3} \mathrm{CN}$ in DCM) to give the compound $\mathbf{2 q}$ in 60% yield.

(2-Ethoxy-4-((4-methylpiperazin-1-yl)sulfonyl)phenyl)methanamine (2r): White solid, m.p. $179-180{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.67(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 2 \mathrm{H}), 2.82-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.37-2.55$ $(\mathrm{m}, 4 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 160.5,129.6,129.0$, $128.8,126.4,110.9,64.2,54.1,47.9,46.1,45.8,14.7$; IR(neat): $3354,2937,2851,2791,1602,1349,1121 \mathrm{~cm}^{-1}$; HRMS (ESI): m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 314.1532$ Found 314.1540 .

2) Synthesis and Characterization of Sildenafil

Sildenafil (5-(2-ethoxy-4-((4-methylpiperazin-1-yl)sulfonyl)phenyl)-1-methyl-3-
 propyl-6,7a-dihydro-1H-pyrazolo[4,3-d]pyrimidin-7(3aH)-one): Sildenafil was prepared by the General Procedure A ($\left.150{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}\right)$ using $10(0.2 \mathrm{mmol}, 36.4 \mathrm{mg})$ and $\mathbf{2 r}(0.24 \mathrm{mmol}$, 75 mg). The residue was purified by column chromatography on silica gel (eluent: $1 \% \mathrm{MeOH}$ in dichloromethane). $47 \mathrm{mg}(50 \%)$; white solid; The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra for this compound are consistent with previously reported literature data. ${ }^{21}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.81$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.38(\mathrm{~m}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{~m}$, $4 \mathrm{H}), 2.90-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{~m}, 4 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right): \delta 159.4,153.8,147.1,146.5,138.5,131.8,131.3,129.0,124.6,121.2,113.2,66.2,54.2$, 46.1, 45.8, 38.4, 27.9, 22.4, 14.7, 14.2.

References

1. Parua, S. P.; Das, S.; Sikari, R.; Sinha, S.; Paul, N. D. One-Pot Cascade Synthesis of Quinazolin-4(3H)-ones via Nickel-Catalyzed Dehydrogenative Coupling of o-Aminobenzamides with Alcohols. J. Org. Chem. 2017, 82, 7165-7175.
2. Dhiman, S.; Saini, H. K.; Nandwana, N. K.; Kumar, D. Copper-Catalyzed Synthesis of Quinoline Derivatives via Tandem Knoevenagel Condensation, Amination and Cyclization. RSC Adv. 2016, 6, 2398723994.
3. Tu, T.; Wang, Z.; Liu, Z.; Feng, X.; Wang, Q. Efficient and Practical Transition Metal-Free Catalytic S20

Hydration of Organonitriles to amides. Green Chem. 2012, 14, 921-924.
4. Mizutani, T.; Nagase, T.; Ito, S.; Miyamoto, Y.; Tanaka, T.; Takenaga, N.; Tokita, S.; Sato, N. Development of Novel 2-[4-(Aminoalkoxy)phenyl]-4(3H)-Quinazolinone Derivatives as Potent and Selective Histamine H_{3} Receptor Inverse Agonists. Bioorg. Med. Chem. 2008, 18, 6041-6045.
5. Sutherell, C.; Ley, S. V. On the Synthesis and Reactivity of 2,3-Dihydropyrrolo[1,2-a]quinazolin-5(1H)ones. Synthesis 2017, 49, 135-144.
6. Long, L.; Wang, Y. H.; Zhuo, J. X.; Tu, Z. C.; Wu, R.; Yan, M.; Liu, Q.; Lu, G. Structure-Based Drug Design: Synthesis and Biological Evaluation of Quinazolin-4-amine Derivatives as Selective Aurora A kinase inhibitors. Eur. J. Med. Chem. 2018, 157, 1361-1375.
7. Nathubhai, A.; Haikarainen, T.; Hayward, P. C.; Muñoz-Descalzo, S.; Thompson, A. S.; Lloyd, M. D.; Lehtiö, L.; Threadgill, M. D. Structure-Activity Telationships of 2-Arylquinazolin-4-ones as Highly Selective and Potent Inhibitors of the Tankyrases. Eur. J. Med. Chem. 2016, 118, 316-327.
8. Wang, Z.; Tang, Y. Mechanistic Insights into a Catalyst-Free Method to Construct Quinazolinones through Multiple Oxidative Cyclization. Tetrahedron 2016, 72, 1330-1336.
9. (a) Kim, H. Y.; Oh, K. A Facile Access to 4-Substituted-2-naphthols via a Tandem Friedel-Crafts Reaction: A β-Chlorovinyl Ketone Pathway. Org. Lett. 2014, 16, 5934-5936; (b) Kim, H. Y.; Takizawa, S.; Oh, K. Copper-catalyzed Divergent Oxidative Pathways of 2-Naphthol Derivatives: ortho-Naphthoquinones versus 2-BINOLs. Org. Biomol. Chem. 2016, 14, 7191-7196; (c) Goriya, Y.; Kim, H. Y.; Oh, K. o-Naphthoquinonecatalyzed Aerobic Oxidation of Amines to (Ket)imines: A Modular Catalyst Approach. Org. Lett. 2016, 18, 5174-5177.
10. Hikawa, H.; Ino, Y.; Suzuki, H.; Yokoyama, Y. Pd-Catalyzed Benzylic C-H Amidation with Benzyl Alcohols in Water: A Strategy to Construct Quinazolinones. J. Org. Chem. 2012, 77, 7046-7051.
11. Zhou, J.; Fang, J. One-pot Synthesis of Quinazolinones via Iridium-Catalyzed Hydrogen Transfers. J. Org. Chem. 2011, 76, 7730-7736.
12. Tian, X.; Song, L.; Li, E.; Wang, Q.; Yu, W.; Chang, J. Metal-free One-pot Synthesis of 1,3Diazaheterocyclic Compounds via I_{2}-Mediated Oxidative C-N Bond Formation. RSC. Adv. 2015, 5, 6219462201.
13. Hu, Y.; Chen, L.; Li, B. Iron Nitrate/TEMPO-catalyzed Aerobic Oxidative Synthesis of Quinazolinones
from Alcohols and 2-Aminobenzamides with Air as the Oxidant. RSC. Adv. 2016, 6, 65196-65204.
14. Liu, W.; Gao, W.; Ding, J.; Huang, X.; Liu, M.; Wu, H. Palladium-catalyzed Oxidative C=C Bond Cleavage with Molecular Oxygen: One-pot Synthesis of Quinazolinones from 2-Amino Benzamides and Alkenes. Org. Chem. Front. 2018, 5, 2734-2738.
15. Iqbal, M. A.; Lu, L.; Mehmood, H.; Khan, D. M.; Hua, R. Quinazolinone Synthesis through Base-Promoted $\mathrm{S}_{N} \mathrm{Ar}$ Reaction of ortho-Fluorobenzamides with Amides Followed by Cyclization. ACS Omega, 2019, 4, 8207-8213.
16. Wang, Q.; Lv, M.; Liu, J.; Li, Y.; Xu, Q.; Zhang, X.; Cao, H. Efficient Synthesis of Quinazolinones by Transition-Metal-Free Direct Aerobic Oxidative Cascade Annulation of Alcohols with o-Aminoarylnitriles. ChemSusChem, 2019, 12, 3043-3048.
17. Xu, W.; Jin, Y.; Liu, H.; Jiang, Y.; Fu, H. Copper-Catalyzed Domino Synthesis of Quinazolinones via Ullmann-Type Coupling and Aerobic Oxidative C-H Amidation. Org. Lett. 2011, 13, 1274-1277.
18. Yang, X.; Cheng, G.; Shen, J.; Kuai, C.; Cui, X. Cleavage of the C-C Triple Bond of Ketoalkynes: Synthesis of 4(3H)-Quinazolinones. Org. Chem. Front. 2015, 2, 366-368.
19. Chen, K.; Gao, B.; Shang, Y.; Du, J.; Gu, Q.; Wang, J. I ${ }_{2}$-Catalyzed Cross Dehydrogenative Coupling: Rapid Access to Benzoxazinones and Quinazolinones. Org. Biomol. Chem. 2017, 15, 8770-8779.
20. Krapf, M. K.; Gallus, J.; Vahdati, S.; Wises, M. New Inhibitors of Breast Cancer Resistance Protein (ABCG2) Containing a 2,4-Disubstituted Pyridopyrimidine Scaffold. J. Med. Chem. 2018, 61, 3389-3408.
21. Laha, J. K.; Patel, K. V.; Tummalapalli, S.; Dayal, N. Formation of Amides, their Intramolecular Reactions for the Synthesis of N-Heterocycles, and Preparation of a Marketed Drug, Sildenafil: A Comprehensive Coverage. Chem. Commun. 2016, 52, 10245-10248.
22. Liu, H.; Zhai, T.; Ding, S.; Hou, Y.; Zhang, X.; Feng, L.; Ma, C. Direct and Metal-Free Oxidative Amination of sp^{3} C-H bonds for the Construction of 2-hetarylquinazolin-4(3H)-ones. Org. Chem. Front. 2016, 3, 10961099.
23. Viji, M.; Nagarajan, R. Copper-Catalysed Synthesis of Indolylquinazolinone Alkaloid Bouchardatine. J. Chem. Sci. 2014, 126, 1075-1080.

Spectra:

 1f

1h

2r-Nitrile

4b

$4 i$

4 j

41

4n

$4 q$

4v

4x

4zb

4zd

4zg

Bouchardatine

Sildenafil

6

