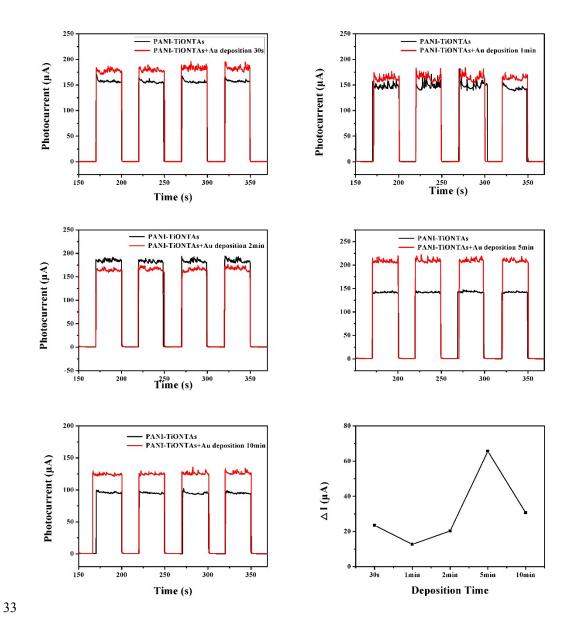
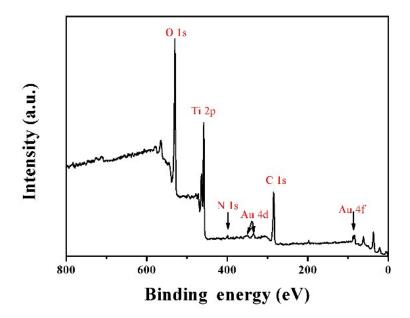

Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Enhanced photoelectrochemical biosensing performance for Au

2 nanoparticle-polyaniline-TiO₂ heterojunction composites

Bingdong Yana, Xiaoru Zhaoa, Delun Chena, Yang Caoa, Chuanzhu Lvc, Jinchun Tua Xiaohong Wang^{a,*}, Qiang Wu^{b,*} 5 ^a State Key Laboratory of Marine Resource Utilization in South China Sea, School of 6 Materials Science and Engineering, Hainan University, Haikou 570228, P. R. China; 7 b School of Tropical Medicine and Laboratory Medicine, MOE Key Laboratory of 8 Emergency and Trauma, Hainan Medical University, Haikou571199, P. R. China; 9 c Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences 10 (No. 2019RU013), Hainan Medical University * Corresponding authors.


29 E-mail addresses: wangxiaohong@hainu.edu.cn; wuqiang001001@aliyun.com.


31 Fig. S1. Optimization of deposition time. The photocurrent was measured before and after

32 polyaniline deposition, and 5 min was selected as the optimum deposition time.

30

34 Fig. S2. Optimization of illumination time. The photocurrents before and after the deposition of Au NPs were measured, and 5 min was selected as the optimum lillumination time.

38

39 Fig. S3. Full XPS spectrum of Au-PANI-TiONTAs with Ti 2p, O 1s, C 1s, N 1s, Au 4d,

40 and Au 4f peaks.

41

Table S1. Recovery study for determining glucose in human serum.

C _{added} (mM)	C_{found} (mM)	Recovery (%)
3.93	3.78	96.18
11.19	10.99	98.21
11.87	11.92	100.42