Electronic supplementary information (ESI) for

One-pot Reductive Amination of Carbonyl Compounds with Nitro

Compounds over Ni/NiO composites

Yusuke Kita, Sayaka Kai, Lesandre Binti Supriadi Rustad, Keigo Kamata, Michikazu Hara*

Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503 (Japan) Fax: (+81)045-924-5381 E-mail: hara.m.ae@m.titech.ac.jp

Advanced Low Carbon Technology Research and Development Program (ALCA), Japan Science and Technology Agency (JST) 4-1-8 Honcho, Kawaguchi 332-0012 (Japan)

- 1. Materials
- 2. Characterization
- 3. Preparation of Ni/NiO
- 4. Preparation of Supported Ni Catalysts
- 5. Catalytic one-pot reductive amination
- 6. Reuse experiment
- 7. Spectral data
- 8. Copies of ¹H and ¹³C NMR spectra
- 9. References

1. Materials

The following materials were used as received: NiO (Aldrich, 99.8% metal basis, <50 nm particle size), Raney alloy (Wako, ca. 50% as Ni), nitrobenzene (Kanto), toluene (Kanto), dichloromethane (Kanto), tetrahydrofuran (Kanto), methanol (Kanto), *N*,*N*-dimethylformamide (Kanto), acetonitrile (TCI), chloroform-*d* (Isotech), monochlorobenzene (Kanto), 4-nitroanisole (Kanto), *o*-methylnitrobenzene (TCI), methyl 4-nitrobenzoate (TCI), 5-chloronitrobenzene (TCI), *o*-tolaldehyde (TCI), *p*-anisaldehyde (TCI), and ethyl 4-formylbenzoate (Wako). Benzaldehyde (Wako) was distilled before use. TiO₂ (ST-01) and Nb₂O₅·nH₂O were supplied from Ishihara Sangyo Kaisha, and Companhia Brasileira de Metalurgia e Mineraçáo, respectively. SiO₂ (Q10) was provided by Fuji Silysia Chemical. ZrO₂ (JRC-ZRO-9) was obtained from the Catalysis Society of Japan as reference catalysts. Metal oxide supports were calcined at 500 °C for 2 h under air before preparation of the supported Ni catalysts.

2. Characterization

Brunauer-Emmett-Teller (BET) specific surface areas of the samples were measured by nitrogen adsorption-desorption at -196 °C (Quantachrome Nova-4200e). Prior to the adsorption measurements, the samples were degassed in situ under vacuum at 150 °C for 1 h. The BET surface area was determined using the multipoint BET algorithm in the P/P_0 range from 0.05 to 0.3. X-ray diffraction (XRD; Ultima IV, Rigaku) patterns of all samples were obtained using Cu Ka radiation (40 kV, 40 mA) in the 2θ range of $15-85^{\circ}$. X-ray photoelectron spectroscopy (XPS; ESCA-3200 Shimadzu) measurements were performed using Mg K α radiation (1486.6 eV). Samples were pressed into pellets and fixed on double-sided carbon tape. The binding energies were calibrated using sputtered C (1s peak at 284.6 eV). ¹H NMR (400 MHz), and ¹³C{¹H} NMR (100 MHz) spectra were measured on Bruker Avance III-400 spectrometers. All ¹H NMR chemical shifts were recorded in ppm (δ) relative to tetramethylsilane or referenced to the chemical shifts of residual solvent resonances (CHCl₃ was used as internal standard, δ 7.26). All ¹³C NMR chemical shifts were recorded in ppm (δ) relative to carbon resonances in CDCl₃ at δ 77.16. Scanning electron microscope (SEM) measurements were conducted using a multi-purpose transmission electron microscope (JEM-2100 plus) at an acceleration voltage of 200 kV with SEM detector (the samples were dispersed on a carbon sheet with ethanol, and dried). Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses were performed with a Shimadzu ICPS-8100 spectrometer. Flash column chromatography was conducted using an automated flash chromatography system (Smart Flash EPCLC AI-580s, Yamazen).

3. Preparation of Ni/NiO composite

The NiO was treated in 5% H₂/Ar (flow rate = 30 mL/min) at designated temperature (200–500 °C) for 2 h to give Ni/NiO-X (X = reduction temperature).

4. Preparation of Supported Ni Catalysts

The 5 wt% Ni/support catalysts were prepared by wet impregnation method.^{S1} Ni(NO₃)₂•6H₂O (0.25 g, 0.86 mmol) was dissolved in water (20 mL). The support (1 g) was added into the aqueous Ni(NO₃)₂ solution, and the mixture was evaporated at 60 °C until dryness. The obtained solid was further dried at 90 °C overnight. The dried sample was calcined at 300 °C for 1 h under air and reduced with 5% H₂/Ar (30 mL/min) at 500 °C for 30 min.

5. Catalytic one-pot reductive amination

The catalytic reaction was conducted in an 18 mL stainless-steel autoclave equipped with a magnetic stirrer. 50 mg of catalyst was loaded into the reactor with 1.2 mmol of aldehyde, 1 mmol of nitro compound and 1 mL of toluene. The autoclave was purged with H_2 several times to remove air and then pressurized with H_2 at 1 MPa. After heating at 80 °C for 20 h, the catalyst was filtered off. The filtrate was analysed by GC and GC-MS using chlorobenzene as an internal standard.

For substrate scope, the filtrate was evaporated to dryness after heating at 80 °C for 20 h. And the resulting crude mixture was purified by flash column chromatography.

6. Reuse experiments

The catalytic reaction was conducted according to the general procedure. For reuse experiments, the catalyst was recovered by filtration, washed with MeOH (25 mL), dried at 90 °C for 5 h. Reduction treatment: The recovered catalyst was reduced under H2 flow (20 mL/min) at 150 °C for 1 h. XRD patterns of the recovered catalyst was not changed (Fig. S2).

7. Spectral Data

N-Benzylaniline (**3aa**)^{S2}

After the reaction was completed, the catalyst was separated by filtration. The crude product was purified by flash column chromatography (hexane : EtOAc = 9 : $1 \rightarrow 7$: 3) to give the pure title compound (98%).

¹H NMR (400 MHz, CDCl₃): δ = 7.38–7.32 (m, 4H), 7.29–7.24 (m, 1H), 7.17 (dd, *J* = 8.0, 8.0 Hz, 2H), 6.71 (dd, *J* = 8.0, 8.0 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 2H), 4.33 (s, 2H), 4.02 (br s, 1H).

¹³C NMR (100 MHz, CDCl₃): δ = 148.5, 140.0, 129.6, 128.9, 127.8, 127.5, 117.8, 113.2, 48.5.

N-Benzyl-4-methoxyaniline (**3ba**)^{S3}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : EtOAc = $8 : 2 \rightarrow 5 : 5$) to give the pure title compound (93 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.37–7.24 (m, 5H), 6.77 (d, *J* = 8.8 Hz, 2H), 6.60 (d, *J* = 8.8 Hz, 2H), 4.27 (s, 2H), 3.73 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 152.3, 142.5, 139.7, 128.6, 127.6, 127.2, 115.0, 114.1, 55.8, 49.3.

Methyl 4-(benzylamino)benzoate (3ca)^{S4}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : $EtOAc = 8 : 2 \rightarrow 6 : 4$) to give the pure title compound (74 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.83 (d, *J* = 8.8 Hz, 2H), 7.34–7.23 (m, 5H), 6.55 (d, *J* = 8.8 Hz, 2H), 4.61 (br s, 1H), 4.33 (s, 2H), 3.80 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 167.4, 151.9, 138.5, 131.6, 128.8, 127.5, 127.4, 118.6, 111.7, 51.5, 47.6.

N-benzyl-4-chloroaniline (**3da**)^{S3}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : $EtOAc = 8 : 2 \rightarrow 6 : 4$) to give the pure title compound (88 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.35–7.25 (m, 5H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.54 (d, *J* = 8.8 Hz, 2H), 4.30 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ = 148.9, 139.2, 129.3, 128.9, 127.6, 127.6, 122.1, 114.2, 48.4.

N-Benzyl-2-methylaniline (3ea)^{S5}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : EtOAc = $8 : 2 \rightarrow 5 : 5$) to give the pure title compound (82 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.38–7.32 (m, 4H), 7.29–7.25 (m, 1H), 7.11–7.06 (m, 2H), 6.67 (dd, *J* = 7.2, 7.2 Hz, 1H), 6.61 (d, *J* = 7.6 Hz, 1H), 4.36 (s, 1H), 3.84 (br s, 1H), 2.15 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 146.2, 139.7, 130.2, 128.8, 127.7, 127.4, 127.3, 122.0, 117.3, 110.4, 48.5, 17.6.

N-(4-methoxybenzyl)aniline (**3ab**)^{S5}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : $EtOAc = 8 : 2 \rightarrow 6 : 4$) to give the pure title compound (67 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.30 (d, *J* = 8.8 Hz, 2H), 7.17 (dd, *J* = 7.6, 8.4 Hz, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 6.71 (dd, *J* = 7.6, 7.2 Hz, 1H), 6.63 (d, *J* = 8.8 Hz, 2H), 4.25 (s, 2H), 3.93 (br s, 1H), 3.80 (s, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 159.0, 148.4, 131.6, 129.4, 129.0, 117.6, 114.2, 113.0, 55.4, 47.9.

Ethyl 4-((phenylamino)methyl)benzoate (3ac)^{S6}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : $EtOAc = 8 : 2 \rightarrow 6 : 4$) to give the pure title compound (94 %).

¹H NMR (400 MHz, CDCl₃): $\delta = 8.01$ (d, J = 8.0 Hz, 2H), 7.43 (d, J = 8.0 Hz, 2H), 7.16 (dd, J = 7.6, 8.4 Hz, 2H), 6.72 (dd, J = 7.2, 7.6 Hz, 1H), 6.61 (d, J = 8.0 Hz, 2H), 4.40–4.34 (m, 4H), 1.39 (t, J = 4.2 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃): δ = 166.6, 148.1, 145.3, 130.0, 129.4, 127.2, 117.8, 113.0, 61.1, 47.9, 14.5.

N-(4-bromobenzyl)aniline (3ad) ^{S7}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : EtOAc = $10 : 1 \rightarrow 5 : 1$) to give the pure title compound (95 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.44 (d, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 7.9 Hz, 2H), 7.16 (dd, *J* = 7.9, 7.3 Hz, 2H), 6.72 (dd, *J* = 7.3, 7.3 Hz, 1H), 6.59 (d, *J* = 7.9 Hz, 2H), 4.34 (s, 2H).

¹³C NMR (100 MHz, CDCl₃): δ = 147.9, 138.6, 131.8, 129.4, 129.1, 121.0, 117.9, 113.0, 47.7.

N-(2-methylbenzyl)aniline (3ae)^{S8}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The crude product was purified by flash column chromatography (hexane : $EtOAc = 8 : 2 \rightarrow 5 : 5$) to give the pure title compound (74 %).

¹H NMR (400 MHz, CDCl₃): δ = 7.34–7.32 (m, 1H), 7.20–7.15 (m, 5H), 6.72 (dd, *J* = 7.6, 7.2 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 2H), 4.27 (s, 2H), 3.84 (br s, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): δ = 148.6, 137.3, 136.5, 130.7, 129.5, 128.5, 127.6, 126.4, 117.7, 112.9, 46.6, 19.2.

N-octylaniline (**3af**)^{S9}

After the reaction was completed, catalyst was separated by filtration and the obtained solution was evaporated and dried *in vacuo*. The yield of was determined based on the phenanthrene as an internal standard.

m/*z* (rel. int.) 205(14), 107(8), 106(100), 77(8).

8. NMR spectra

	NO ₂ + 0 ²		cata H ₂ (y	alyst MPa) ┣			
	1a 2	2a (x equiv.)			3aa	
entry	catalyst	x (equiv.)	y (MPa)	temp. (°C)	yield (%)	TON	ref.
1	Ni/NiO-300	1.2	0.5	80	89	4.1	This work
2	Fe ₂ O ₃ /NGr@C	2	7	170	85	17	S10
3	Cu/Al ₂ O ₃	1.5	5	125	67	573	S11
4	Co ₂ O ₃ /NGr@C	2	5	110	95	47.5	S12
5	Co-DABCO-TPA@C	1.5	4	120	92	26.3	S13
6	Co-N _x /C	2	1	110	98	5.8	S14
7	Co/mCN	1.5	1	150	99.8	49.2	S15
8	MoS ₂	1.4	2	120	85	13.7	S16
9	Ni@NC	2	2	100	98	44.9	S17

Table S1 Reported Non-Precious Metal-Based Catalysts for One-pot ReductiveAmination of Benzaldehyde with Nitrobenzene using H_2 as reductant.

$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\$						
entry	catalyst	reductant	x (equiv.)	temp. (°C)	yield of 3aa (%)	ref.
1	Co@CN-600AT	НСООН	2	190	96	S18
2	Co@CN-800	НСООН	2	170	89	S19
3	Co-Nx/C-800AT	НСООН	2	150	96	S20
4	Co/N-C-600	CO/H ₂ O	2	170	99	S21

Table S2 Reported Non-Precious Metal-Based Catalysts for One-pot ReductiveAmination of Benzaldehyde with Nitrobenzene using other reductant.

Entry	Catalyst	Crystallite Diameter (nm) ^a		
Liiti y		Ni	NiO	
1	Ni/NiO-200	-	49	
2	Ni/NiO-250	-	57	
3	Ni/NiO-300	73	59	
4	Ni/NiO-350	82	63	
5	Ni/NiO-400	95	-	
6	Ni/NiO-500	115	-	

Table S3 Crystallite Diameter of Ni/NiO

^a Crystallite sizes were determined by XRD.

Table S4 Optimization Study^a

NO	D ₂ 0	Ni/NiO-300 H ₂ (1 MPa)	H	+	N
		solvent, 20 h	Ţ,	Ť (, i i
1a	2a		3 aa	~	4aa
Entry	Solvent	Temp. (°C)	Conv. of 1a (%)	Yield of 3aa (%)	Yield of 4aa (%)
1	toluene	80	>99	77	5
2	methanol	80	>99	trace	38
3	THF	80	23	_	3
4	DMF	80	>99	_	_
5	CH_2Cl_2	80	47	4	13
6	CH ₃ CN	80	61	trace	20
7	toluene	100	>99	83	1
8	toluene	70	>99	76	4
9	toluene	60	>99	trace	70
10 ^b	toluene	80	>99	90	trace

^a Reaction conditions: Ni/NiO-300 (0.05 g), 1a (0.5 mmol), 2a (0.5 mmol), solvent (5 mL), H₂ (1 MPa), 80 °C, 20 h. Conversion and yield were determined by GC analysis.
^b 15 mg of Ni/NiO was used. Run for 40 h.

Table S5 Effects of catalyst on imine formation^a

^{*a*} Reaction conditions: catalyst (0.02 g), aniline (1 mmol), **2a** (1 mmol), toluene (1 or 5 mL), 1 h. Conversion and yield were determined by GC analysis. ^{*b*} Determined by NMR analysis based on phenanthrene as an internal standard.

Table S6 Hydrogenation of nitrobenzene over Ni-based catalysta

	NO ₂ 1a	catalyst H ₂ (1 MPa) toluene 80 °C, 5 h	H ₂
Entry	Catalyst	Conv. of 1a (%)	Yield of aniline (%)
1	Ni/NiO-300	40	32
2	Ni/SiO ₂	53	45

^{*a*} Reaction conditions: catalyst (0.05 g), **1a** (1 mmol), toluene (1 mL), H₂ (1 MPa), 80 °C. Conversion and yield were determined by GC analysis

	Aaa	cataly H ₂ (1 M tolue 80 °	yst //Pa) ne C 3aa	
Entry	Catalyst	Time (h)	Conv. of 4aa (%)	Yield of 3aa (%)
1	Ni/NiO-300	5	92	89
2	Ni/NiO-300	10	99	92
3	Ni/NiO-300	15	>99	96
4	Ni/SiO ₂	5	20	5
5	Ni/SiO ₂	10	48	35
6	Ni/SiO ₂	15	83	70

^{*a*} Reaction conditions: catalyst (0.05 g), **4aa** (1 mmol), toluene (1 mL), H₂ (1 MPa), 80 °C. Conversion and yield were determined by GC analysis

Fig. S1 XRD patterns of supported Ni catalysts. (a) Ni/Nb₂O₅, (b) Ni/TiO₂, (c) Ni/SiO₂, (d) Ni/ZrO₂.

Fig. S2 XRD patterns for (a) fresh Ni/NiO-300 and (b) recovered Ni/NiO-300

Fig. S3 SEM images of Ni/NiO-x

Fig. S4 SEM images of Ni/NiO-300

Fig. S5 SEM images of NiO

Fig. S6 SEM images of recovered Ni/NiO-300

9. References

- S1 K.-i. Shimizu, K. Kon, W. Onodera, H. Yamazaki and J. N. Kondo, ACS Catal., 2013, 3, 112–117.
- S2 Y. Peng, Y.-H. Fan, S.-Y. Li, B. Li, J. Xue and Q.-H. Deng, Org. Lett., 2019, 21, 8389–8394.
- S3 A. Cho, S. Byun and B. M. Kim, Adv. Synth. Catal., 2018, 360, 1253–1261.
- S4 P. Chaudhary, R. Korde, S. Gupta, P. Sureshbabu, S. Sabiah and J. Kandasamy, *Adv. Synth. Catal.*, 2018, **360**, 556–561.
- S5 C. Wang, C. Chen, J. Han, J. Zhang, Y. Yao and Y. Zhao, *Eur. J. Org. Chem.*, 2015, 2972–2977.
- S6 D. Wei, A. Bruneau-Voisine, D. A. Valyaev, N. Lugan and J. Sortais, *Chem. Commun.*, 2018, **54**, 4302-4305.
- S7 K. Das, A. Mondal, D/ Pal, H. K. Srivastava and D. Srimani, Organometallics, 2019, 38, 1815–1825.
- S8 P. Liu, R. Liang, L. Lu, Z. Yu and F. Li, J. Org. Chem., 2017, 82, 1943–1950.
- S9 Y. Zhang, X. Qi, X. Cui, F. Shi and Y. Dneg, *Tetrahedron Lett.*, 2011, **52**, 1334– 1338.
- S10 T. Stemmler, A.-E. Surkus, M.-M. Pohl, K. Junge and M. Beller, *ChemSusChem*, 2014, 7, 3012–3016.
- S11 A. L. Nuzhdin, E. A. Artiukha, G. A. Bukhtiyarova, E. A. Derevyannikova and V. I. Bukhtiyarov, *Catal. Commun.*, 2017, **102**, 108–113.
- S12 T. Stemmler, F. A. Westerhaus, A.-E. Surkus, M.-M. Pohl, K. Junge and M. Beller, *Green Chem.*, 2014, **16**, 4535–4540.
- S13 R. V. Jagadeesh, K. Murugesan, A. S. Alshammari, H. Neumann, M.-M. Pohl, J. Radnik and M. Beller, *Science*, 2017, **358**, 326–332.
- S14 L. Jiang, P. Zhou, Z. Zhang, Q. Chi and S. Jin, New J. Chem., 2017, 41, 11991– 11997.
- S15 X. Cui, K. Liang, M. Tian, Y. Zhu, J. Ma and Z. Dong, *J. Colloid Interface Sci.*, 2017, **501**, 231–240.
- S16 Y. Zhang, Y. Gao, S. Yao, S. Li, H. Asakura, K. Teramura, H. Wang and D. Ma, ACS Catal., 2019, 9, 7967–7975.
- S17 J. Li, B. Wang, Y. Qin, Q. Tao and L. Chen, *Catal. Sci. Technol.*, 2019, 9, 3726– 3734.
- S18 L. Jiang, P. Zhou, Z. Zhang, S. Jin and Q. Chi, *Ind. Eng. Chem. Res.*, 2017, 56, 12556–12565.
- S19 P. Zhou, Z. Zhang, L. Jiang, C. Yu, K. Lv, J. Sun and S. Wang, *App. Catal. B: Environ.*, 2017, **210**, 522–532.
- S20 P. Zhou and Z. Zhang, CheSusChem, 2017, 10, 1892–1897.
- S21 P. Zhou, C. Yu, L. Jiang, K. Lv and Z. Zhang, J. Catal., 2017, 352, 264–273.