Supplementary Material

Performance Evaluation of Low-Cost, Novel Vanadium Nitride Xerogel (VNXG) as a Platinum Free Electrocatalyst for Dye-sensitized Solar Cells

Subashini Gnanasekar,^a Prashant Sonar,^{b,c} Sagar M. Jain,^d Soon Kwan Jeong,^{e*} Andrews Nirmala Grace^{a*}

^aCentre for Nanotechnology for Research, VIT, Vellore 632014, Tamil Nadu, India.

^bSchool of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4000, Australia ^cCentre for Material Science, Queensland University of Technology, Brisbane, Queensland 4000, Australia

^d Concentrated Solar Power Center for Renewable Energy Systems, School of Water Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK

^e Climate Change Technology Research Division, Korea Institute of Energy Research, Yuseong-gu, Daejeon 305-343, South Korea

Fig. S1. SEM images of (a) commercial V₂O₅ powder (b) V₂O₅ Xerogel.

Fig. S2. Cross sectional SEM image of VN xerogel coated FTO glass substrate.