Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

> Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

> > Supporting Information

In situ synthesis of copper nanoparticles encapsulated by

nitrogen-doped graphene at room temperature via solution plasma

Phu Quoc Phan,^a Sangwoo Chae,^{ac} Phuwadej Pornaroontham,^{ac} Yukihiro Muta,^{ac} Kyusung Kim,^e

Xiaoyang Wang^{ad} and Nagahiro Saito^{*abcd}

^aDepartment of Chemical Systems Engineering, Graduate School of Engineering, Nagoya University,

Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

^bConjoint Research Laboratory in Nagoya University, Shinshu University, Furo-cho, Chikusa-ku,

Nagoya 464-8603, Japan

^cJapan Science and Technology Corporation (JST), Open Innovation Platform with Enterprises,

Research Institute and Academia (OPERA), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

^dJapan Science and Technology Corporation (JST), Strategic International Collaborative Research

Program (SICORP), Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

^eNational Institute of Advanced Industrial Science and Technology (AIST), Anagahora,

Shimoshidami, Moriyama, Nagoya 463-8560, Japan

*Corresponding author e-mail: hiro@sp.material.nagoya-u.ac.jp

Fig. S1 Solution plasma (SP) synthesis of Cu-NFG.

Fig. S2 TGA and DTA results of Cu-NFG-100 (a) and Cu-NFG-200 (b).

Fig. S3 XRD of commercial Cu and JCPDS of Cu, CuO and Cu₂O.

Fig. S4 Current and voltage waveforms during discharge in DMF at 100 kHz (a) and 200 kHz (b).

Fig. S5 Nitrogen adsorption-desorption isotherm at -196 °C, Brunauer-Emmett-Teller (BET) surface area and pore volume distribution results of Cu-NFG-100 (a), and Cu-NFG-200 (b).

Calculation of the electron excitation temperature

The electron excitation temperature is calculated using the equation:

$$T_e = -\frac{E_k - E_i}{k} \left[ln \left(\frac{A_k g_k I_i \lambda_i}{A_i g_i I_k \lambda_k} \right) \right]^{-1}$$

where:

E is the energy of the upper level (eV), *k* is the Boltzmann constant (8.617 x 10^{-5} eV·K⁻¹), *A* is the transition probability (s⁻¹), *g* is statistical weight, *I* is spectral intensity (a.u.), λ is the emission spectrum wavelength (nm).

In this calculation, spectral lines of H_{α} and H_{β} were selected to calculate the electron temperature with the detail as table below:

Spectrum	H _α	H _β
Emission spectrum wavelength, λ (nm)	659.32	489.20
Spectral intensity, I at 100kHz (a.u.)	7215.32	2316.38
Spectral intensity, I at 200kHz (a.u.)	22310.22	6812.40
Statistical weight, g	16	32
Upper level energy, E (eV)	12.41	12.75
Transition probability, A (10 ⁶ s ⁻¹)	44.1	1.7

Spectroscopic data of Hydrogen peak present in the solution plasma: