Temperature-Responsive Iron Nanozymes Based on Poly(N-

vinylcaprolactam) with Multi-Enzyme Activity

Yang Wang, *a Wei Wang, ^{c,1} Zhun Gu, ^a Xiangyang Miao,^a Qiuyan Huang,^a and Baisong Chang*^b

^aDepartment of Medical Technology, Suzhou Chien-shiung Institute of Technology, Taicang 215411, Jiangsu Province, P.R. China.

^bState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P.R. China.

^cNhwa Pharma. Corporation, Xuzhou 221000, Jiangsu Province, P.R. China. ¹Co-first author.

		1	5	
Sample	V (μL) ^a	V (μL) ^b	V (μL) ^c	V (µL) ^d
Test sample			20	20
double-distilled water	20	20	—	—
Enzyme working solution	20	—	20	—
Enzyme dilution solution	_	20	_	20
Substrate application	200	200	200	200
Solution	200	200	200	200

Table S1 The volume of the fed samples for SOD kit assay.

^aControl well, ^bControl blank well, ^cAssay well, ^dBlank well.

Table S2 Comparison of the Apparent Michaelis-Menten Constant	$(K_{\rm m})$ and Maximum
Reaction Rate (V_{max}) of FeCPNGs and HRP.	

substrate	catalyst	$K_{\rm m}({\rm mM})$	<i>V</i> _m (×10 ⁻⁸ M s ⁻¹)
H ₂ O ₂	FeCPNGs	1.95	8.71
H_2O_2	HRP	2.35	9.86

Fig. S1 Molar ratios of monoester and diester at different temperatures.

Fig. S2 Mono- and di-ester ratios at different reaction times.

Fig. S3 The XRD pattern of the prepared nanozyme.

Fig. S4 The effect of FeCPNGs concentration on UV absorption maximum intensity at 652 nm (a) UV absorbance at 652 nm with different concentrations of FeCPNGs at different time in an hour (b).

Fig. S5 The UV absorption spectra containing different concentrations of FeCPNGs (a) and UV absorption curves with concentration of 25 μ g/mL at different time in an hour (b).