Supporting Information for

Strong electron acceptor additive based spiro-OMeTAD for high- performance and hysteresis-less planar perovskite solar

cells

Shibo Wang, Weihai Sun*, Mingjing Zhang, Huiying Yan, Guoxin Hua, Zhao Li,

Ruowei He, Weidong Zeng, Zhang Lan, and Jihuai Wu*

Fig. S1 FTIR spectra of pristine spiro-OMeTAD, DDQ and DDQ-doped spiro-OMeTAD.

Education,

^{*} Engineering Research Center of Environment-Friendly Functional Materials, Ministry of

Fujian Engineering Research Center of Green Functional Materials,

Institute of Materials Physical Chemistry, Huaqiao University, Xiamen, 361021, China

E-mail: <u>sunweihai@hqu.edu.cn</u>; jhwu@hqu.edu.cn (J.H. Wu).

Fig. S2 The evolutions of V_{OC} (a), J_{SC} (b) and FF (c) for the devices stored in the dark at room temperature with a relative humidity of about 20%.