# Syntheses of tetrahydroquinoline-based chiral carbene precursors and the related chiral NHC-Au(I) complex 

 having a rare intramolecular $\mathrm{Au} \cdots \mathbf{H}-\mathbf{C}\left(\mathbf{s p}^{3}\right)$ interactionLicheng Zhan, Gengtao Zhang, Jiwei Wang, and Jun Zhang*

## General Information:

Unless otherwise stated, all reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified by distillation using standard methods. Commercially available reagents were used without further purification. NMR spectra were recorded by using a Bruker 400 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard $\left({ }^{1} \mathrm{H} N M R \mathrm{CDCl}_{3}: 7.26\right.$ ppm, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} 2.50 \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left.\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$. Mass spectra were recorded on the HP-5989 instrument by EI/ESI methods. X-ray diffraction analysis was performed by using a Bruker Smart-1000X-ray diffractometer.

## Preparation and characterization

Synthesis of various formamidines:

$$
\begin{aligned}
& \mathrm{ArNH}_{2}+\mathrm{HC}(\mathrm{OEt})_{3} \xrightarrow[120 \sim 140{ }^{\circ} \mathrm{C}]{ }\left[\mathrm{Ar}-\mathrm{N}_{\approx} \mathrm{OEt}\right]+\mathrm{Ar}^{\prime} \mathrm{NH}_{2} \xrightarrow[140 \sim 160^{\circ} \mathrm{C}]{\text { cat. } \mathrm{HOAc}} \mathrm{Ar}^{\prime}-\mathrm{N} \approx \stackrel{\mathrm{H}}{\mathrm{~N}}-\mathrm{Ar} \\
& \text { Ar=Mes, Ar'=m- }{ }^{\text {i }} \text { Pr;1a } \\
& \text { Ar=2,6-EtPh, Ar'=o- }{ }^{-1} \mathrm{Pr} ; 1 \mathrm{~b} \\
& \text { Ar=Mes, } \mathrm{Ar}^{\prime}=\mathrm{o}-\mathrm{I} \mathrm{Pr} ; \mathbf{1 c}
\end{aligned}
$$

Scheme S-1: Synthesis of various formamidines.

## General procedure:

The mixture of aromatic amines (1.0 eq.) and triethylorthoformate ( 1.0 eq.) was heate d at $120 \sim 140{ }^{\circ} \mathrm{C}$. After 5 h , the mixture was allowed to cool to room temperature. T hen another aromatic amine ( 1.0 eq.) and glacial acetic acid ( 0.05 eq .) was added. Th e mixture was stirred at $140 \sim 160{ }^{\circ} \mathrm{C}$ for 5 h , then pre-absorbed on silica gel and puri fied by column chromatography ( $\mathrm{PE} / \mathrm{EtOAc}=25: 1 \rightarrow 20: 1$ ) to afford the products. The formamidines 1c were prepared as previously reported. ${ }^{1}$

## N'-(3-isopropylphenyl)-N-mesitylformimidamide (1a)



Following the general procedure, 2,4,6-trimethylaniline ( $6.0 \mathrm{~g}, 44.38 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ triethylorthoformate ( $6.6 \mathrm{~g}, 44.38 \mathrm{mmol}, 1.0 \mathrm{eq}$ ), 3-isopropylaniline ( $6.0 \mathrm{~g}, 44.38 \mathrm{mmol}, 1.0$ eq.) and glacial acetic acid ( $133 \mathrm{mg}, 2.22 \mathrm{mmol}, 0.05 \mathrm{eq}$.) afforded the product as white solid $(6.8 \mathrm{~g}, 55 \%)$.The product was obtained as a complex mixture of isomers and the assignment was not possible. In $\mathrm{CDCl}_{3}\left(25^{\circ} \mathrm{C}\right)$ this formamidine exists as a mixture of two isomers in a ratio of $7: 3$ ratio. ${ }^{1} \mathrm{H}$ NMR chemical shifts that differ between isomers are marked by maj. and $\min .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.91(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 0.3 \mathrm{H}, \min ),. 7.16(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 0.7 \mathrm{H}$, maj. $), 6.91(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}$, $0.3 \mathrm{H}, \min$ ), 6.68 ( $\mathrm{s}, 0.7 \mathrm{H}$, maj.), 2.87-2.82 ( $\mathrm{m}, 0.3 \mathrm{H}, \mathrm{min}$.), 2.77-2.72 ( $\mathrm{m}, 0.7 \mathrm{H}$, maj.), 2.29 ( s , $3 \mathrm{H}), 2.22(\mathrm{~s}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.5,130.7,129.6,129.4,129.2,129.0,128.8,120.4,115.1,113.0$, 34.0, 23.8, 23.6, 20.7, 18.6, 179; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{2}{ }^{+}: 320.2252$, found: 320.2249 .

## N-(2,6-diethylphenyl)-N'-(2-isopropylphenyl)formimidamide (1b)



Following the general procedure, 2,6-diethylaniline ( $6.0 \mathrm{~g}, 40.27 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) ,$ triethylorthoformate ( $6.0 \mathrm{~g}, 40.27 \mathrm{mmol}, 1.0 \mathrm{eq}$.), 2-isopropylaniline ( $5.5 \mathrm{~g}, 40.27 \mathrm{mmol}, 1.0$ eq.) and glacial acetic acid ( $121 \mathrm{mg}, 2.01 \mathrm{mmol}, 0.05 \mathrm{eq}$.) afforded the product as white solid $(6.3 \mathrm{~g}, 53 \%)$. The product was obtained as a complex mixture of isomers and the assignment was not possible. In $\mathrm{CDCl}_{3}\left(25^{\circ} \mathrm{C}\right)$ this formamidine exists as a mixture of two isomers in a ratio of $3: 2$ ratio. ${ }^{1} \mathrm{H}$ NMR chemical shifts that differ between isomers are marked by maj. and $\min .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.82(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 0.4 \mathrm{H}, \min ),$.7.68 (s, 0.6 H, maj.), 7.2-6.95 (m, 7H), 3.31-3.23 (m, 1H) 2.68-2.47 (m, 4H), $1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 4.5 \mathrm{H}), 1.21(\mathrm{~d}, J=$ 6.0 Hz, 3H), $1.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1.5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=144.0,137.0,136.2,134.2,126.9,126.5,126.4,125.6,124.0,123.7,123.6,118.8,117.5$, 27.6, 24.9, 24.5, 22.8, 22.3, 14.8, 14.4.

## Synthesis of various imidazolinium salts 2a~2d:

The (S)-2-allyloxiranes were prepared as previously reported. ${ }^{2,3}$


Scheme S-2: Synthesis of various imidazolinium salts 2a~2d.

## General procedure:

Formamidine ( 1.0 eq.) was dissolved in DMF, and to the suspension NaH ( $60 \%$ suspension in mineral oil, 1.5 eq.) was added portion by portion at $0^{\circ} \mathrm{C}$. After 5 mins the resulting mixture was warmed to room temperature and stirred for 30 mins . After cooling to $0^{\circ} \mathrm{C}$, (S)- 2allyloxirane ( 1.2 eq.) was added dropwise, After 5 mins the mixture was heated to $70^{\circ} \mathrm{C}$. The reaction progress was monitored by TLC. After full conversion of the corresponding formamidine, $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with EtOAc ( $30 \mathrm{~mL} \times 3$ ), The combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under vacuum, and the residue was purified by flash chromatography on silica gel ( $\mathrm{PE} / \mathrm{EtOAc}$ $=25: 1$ ) to give alcohol intermediate which were used directly. The alcohol intermediate was then dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 eq.) was added dropwise. After $5 \mathrm{mins}, \mathrm{Tf}_{2} \mathrm{O}$ ( 1.2 eq.) was added carefully under $-40^{\circ} \mathrm{C}$. The solution was warmed to room temperature and stirred for $5-8 \mathrm{~h}$. The volatiles were removed under vacuum, and the residue was purified by chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}=40: 1 \rightarrow 20: 1\right)$ to give the product ( $\mathbf{R}$ )-2.
(R)-3-(3-isopropylphenyl)-1-mesityl-4-(2-methylallyl)-4,5-dihydro-1H-imidazol-3-ium trifluoromethanesulfonate ((R)-2a)


Following the general procedure, formamidine $1 \mathbf{1 a}(1.0 \mathrm{~g}, 3.57 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) dissolved in$ DMF 15 mL , NaH ( $60 \%$ suspension in mineral oil, $214 \mathrm{mg}, 5.36 \mathrm{mmol}, 1.5 \mathrm{eq}$ ), and (S)-2allyloxirane ( $420 \mathrm{mg}, 4.28 \mathrm{mmol}, 1.2 \mathrm{eq}$.), afforded alcohol intermediate as yellow oill ( 960
$\mathrm{mg}, 71 \%$ ); alcohol intermediate ( $960 \mathrm{mg}, 2.54 \mathrm{mmol}, 1.0$ eq.) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 10 \mathrm{~mL}$, $\mathrm{Et}_{3} \mathrm{~N}$ ( $308 \mathrm{mg}, 3.05 \mathrm{mmol}, 1.2$ eq.) and $\mathrm{Tf}_{2} \mathrm{O}(879 \mathrm{mg}, 3.05 \mathrm{mmol}, 1.2$ eq.) , afforded (R)-2a as white powder ( $847 \mathrm{mg}, 65 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=8.67(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 3 \mathrm{H})$ $7.27(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 2 \mathrm{H}), 5.54-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.95(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{t}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=155.5,151.8,140.5,138.6,133.7,130.2,130.1,129.9,126.8,119.8,119.1,115.8$, 60.1, 55.4, 40.5, 34.0, 23.6, 22.3, 21.0, 17.6; HRMS (EI): m/z [M - OTf] calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2}{ }^{+}$: 361.2644; found: $361.2642 ;[\alpha]^{25}{ }_{\mathrm{D}}+70\left(c=0.050, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R)-1-(2,6-diethylphenyl)-3-(2-isopropylphenyl)-4-(2-methylallyl)-4,5-dihydro-1H-imidazol-3-ium trifluoromethanesulfonate ((R)-2b)

(R)-2b

Following the general procedure, formamidine $\mathbf{1 b}(1.0 \mathrm{~g}, 3.40 \mathrm{mmol}, 1.0$ eq.) dissolved in DMF 15 mL , NaH ( $60 \%$ suspension in mineral oil, $204 \mathrm{mg}, 5.10 \mathrm{mmol}, 1.5 \mathrm{eq}$.), and (S)-2allyloxirane ( $400 \mathrm{mg}, 4.08 \mathrm{mmol}, 1.2 \mathrm{eq}$.), afforded alcohol intermediate as yellow oill ( 980 $\mathrm{mg}, 71 \%$ ); alcohol intermediate ( $980 \mathrm{mg}, 2.50 \mathrm{mmol}, 1.0$ eq.) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 10 \mathrm{~mL}$, $\mathrm{Et}_{3} \mathrm{~N}$ ( $304 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.2$ eq.) and $\mathrm{Tf}_{2} \mathrm{O}(865 \mathrm{mg}, 3.00 \mathrm{mmol}, 1.2$ eq.), afforded (R)-2b as white powder ( $983 \mathrm{mg}, 75 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=8.20(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.22$ $(\mathrm{m}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.51(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=11.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=157.8,140.8,138.4$, $131.2,131.1,131.0,130.4,128.3,128.1,128.0,127.5,127.3,127.2,115.5,63.2,56.9,41.1$, 28.3, 24.3, 24.2, 24.1, 23.9, 22.0, 15.2, 14.9; HRMS (EI): m/z [M - OTf] ${ }^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2}{ }^{+}: 375.2800$, found: $375.5796 .[\alpha]^{25}{ }_{\mathrm{D}}+70\left(c=0.050, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(R)-3-(2-isopropylphenyl)-1-mesityl-4-(2-methylallyl)-4,5-dihydro-1H-imidazol-3-ium trifluoromethanesulfonate ((R)-2c)


Following the general procedure, formamidine $1 \mathrm{c}(1.0 \mathrm{~g}, 3.57 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) dissolved in$ DMF 15 mL , NaH ( $60 \%$ suspension in mineral oil, $214 \mathrm{mg}, 5.36 \mathrm{mmol}, 1.5 \mathrm{eq}$ ), and (S)-2allyloxirane ( $420 \mathrm{mg}, 4.28 \mathrm{mmol}, 1.2 \mathrm{eq}$.), afforded alcohol intermediate as yellow oill ( 820 $\mathrm{mg}, 60 \%$ ); alcohol intermediate ( $820 \mathrm{mg}, 2.17 \mathrm{mmol}, 1.0$ eq.) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 10 \mathrm{~mL}$, $\mathrm{Et}_{3} \mathrm{~N}(264 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and \mathrm{Tf}_{2} \mathrm{O}(750 \mathrm{mg}, 2.60 \mathrm{mmol}, 1.2 \mathrm{eq}$.), afforded ( $\mathbf{R}$ )-2c as white powder ( $819 \mathrm{mg}, 74 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=8.23(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~s}$, $2 \mathrm{H}), 5.20-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.63(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=$ $11.6 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dd}, J=14.0 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (d, $J=11.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=157.9,145.3,140.4,138.3,135.2,130.9,130.4,129.9$, $128.3,127.6,127.2,62.9,55.5,53.4,40.7,30.8,28.1,24.1,23.9,21.9,20.9,17.5 ;$ HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{OTf}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2}{ }^{+}: 361.2644$, found: 361.2645 . $[\alpha]^{25}{ }_{\mathrm{D}}+35(c=0.100$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
(R)-4-allyl-3-(2-isopropylphenyl)-1-mesityl-4,5-dihydro-1H-imidazol-3-ium trifluoromethanesulfonate ((R)-2d)


Following the general procedure, formamidine $\mathbf{1 a}(1.0 \mathrm{~g}, 3.57 \mathrm{mmol}, 1.0$ eq.) dissolved in DMF 15 mL , NaH ( $60 \%$ suspension in mineral oil, $214 \mathrm{mg}, 5.36 \mathrm{mmol}, 1.5 \mathrm{eq}$. ), and (S)-2allyloxirane ( $360 \mathrm{mg}, 4.28 \mathrm{mmol}, 1.2 \mathrm{eq}$.) , afforded alcohol intermediate as yellow oill ( 770 $\mathrm{mg}, 59 \%$ ); alcohol intermediate ( $770 \mathrm{mg}, 2.11 \mathrm{mmol}, 1.0$ eq.) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2} 10 \mathrm{~mL}$, $\mathrm{Et}_{3} \mathrm{~N}(256 \mathrm{mg}, 2.53 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) and \mathrm{Tf}_{2} \mathrm{O}(730 \mathrm{mg}, 2.53 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) , afforded (R)-2d$ as white powder $(718 \mathrm{mg}, 69 \%)^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.20(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}$, 2H), 5.75-5.65 (m, 1H), $5.27(\mathrm{t}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.20-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.47(\mathrm{~m}, 1 \mathrm{H})$,
$2.38(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=158.2,145.1,140.8,131.1,130.4,130.1,130.0,129.9,128.1,127.8,127.4$, 121.5, 64.1, 55.1, 36.1, 28.3, 24.3, 24.1, 21.0, 17.7; HRMS (EI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{OTf}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2}^{+}: 347.2487$, found: 347.2491. $[\alpha]^{25}{ }_{\mathrm{D}}+82\left(c=0.050, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Synthesis of various imidazolinium salts 6a~6d:



Scheme S-3: Synthesis of various imidazolinium salts 5a~5d.

## General procedure:

Imidazolinium salts (R)-2 (1.0 eq.) was dissolved in THF, and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ( 1.5 eq.) was added. The mixture was stirred at room temperature for $3 h$, the reaction progress was monitored by TLC. After full conversion of the corresponding imidazolinium salts 2, $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture was extracted with EtOAc ( $15 \mathrm{~mL} \times 3$ ), the combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under vacuum, and the residue were used for the next step directly. The intermediate was then dissolved in dry THF and $\mathrm{LiAlH}_{4}$ $(1.5 \mathrm{eq})$ was added under $0^{\circ} \mathrm{C}$, then the mixture was stirred at room temperature for 2 h , then $10 \% \mathrm{NaOH}$ was added and the mixture was extracted with EtOAc ( $15 \mathrm{~mL} \times 3$ ), The combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under vacuum, and the residue was purified by flash chromatography to give diamine intermediate 3 which were used without characterization. The diamine intermediate 3 was then dissolved in PhCl and $\mathrm{AlCl}_{3}(2.5 \mathrm{eq})$ was added, then the mixture was heated to $110^{\circ} \mathrm{C}$ for 2 h (or the diamine intermediate 3 was dissolved in $\mathrm{CHCl}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added under $0^{\circ} \mathrm{C}$ carefully, then the mixture was heated to $60^{\circ} \mathrm{C}$ for 3 h ), then ice water was added and the mixture was extracted with EtOAc ( $15 \mathrm{~mL} \times 3$ ), The combined organic layers was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The volatiles were removed under vacuum, and the residue was purified by flash chromatography to give diamine intermediate 4 which were used without characterization.

The diamine intermediate $\mathbf{4}$ was then dissolved in $\mathrm{HC}(\mathrm{OEt})_{3}$ and $\mathrm{NH}_{4} \mathrm{BF}_{4}(1.2 \mathrm{eq})$ was added, and the mixture was heated to $120^{\circ} \mathrm{C}$ for 4 h , then pre-absorbed on silica gel and purified by chromatography on silica gel to give the product (R)-5.
(R)-8-isopropyl-2-mesityl-5,5-dimethyl-3,3a,4,5-tetrahydro-2H-imidazo[1,5-a]quinolin-10-ium tetrafluoroborate ((R)-5a)


Following the general procedure, imidazolinium salts $\mathbf{2 a}(1.0 \mathrm{~g}, 1.96 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) dissolved$ in THF 10 mL , and KO'Bu ( 330 mg , $2.94 \mathrm{mmol}, 1.5 \mathrm{eq}$ ); THF 10 mL , KO'Bu ( $263 \mathrm{mg}, 2.35$ mmol, 1.2 eq.) and $\mathrm{LiAlH}_{4}(112 \mathrm{mg}, 2.94 \mathrm{mmol}, 1.5 \mathrm{eq})$, afforded $\mathbf{3 a}$ as yellow oill $(452 \mathrm{mg}$, $66 \%$ ); 3a ( $450 \mathrm{mg}, 1.29 \mathrm{mmol}, 1.0$ eq.) dissolved in PhCl 10 mL , amd $\mathrm{AlCl}_{3}(430 \mathrm{mg}, 3.21$ $\mathrm{mmol}, 2.5 \mathrm{eq}$ ), afforded $\mathbf{4 a}$ as yellow oill ( $250 \mathrm{mg}, 55 \%$ ); $\mathbf{4 a}(250 \mathrm{mg}, 0.71 \mathrm{mmol}, 1.0 \mathrm{eq})$ dissolved in $\mathrm{HC}(\mathrm{OEt})_{3} 6 \mathrm{~mL}$, and $\mathrm{NH}_{4} \mathrm{BF}_{4}(90 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.2$ eq), afforded (R)-5a as yellow powder ( $200 \mathrm{mg}, 63 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.71(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 2 \mathrm{H}), 5.06-4.97$ $(\mathrm{m}, 1 \mathrm{H}), 4.64(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=11.6 \mathrm{~Hz}, 10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 1 \mathrm{H})$, $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{t}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=152.8,149.7,140.7,133.3,130.2,129.7,127.8,126.2,115.7,56.8,56.3,43.2$, 33.7, 33.4, 31.7, 30.6, 23.6, 23.5, 21.0, 17.5; HRMS (ESI): m/z $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2}{ }^{+}: 361.2638$, found: 361.2639. $[\alpha]^{25}{ }_{\mathrm{D}}+503\left(c=0.035, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## (R)-N-((7-isopropyl-4,4-dimethyl-1,2,3,4-tetrahydroquinolin-2-yl)methyl)-2,4,6-

 trimethylaniline ((R)-4a)
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 6.56(\mathrm{dd}, J=7.6 \mathrm{~Hz}$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=12.0 \mathrm{~Hz}, 4.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.92 (dd, $J=12.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=$
$3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.62(\mathrm{~s}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=147.4,143.2,143.0,131.9,130.3,129.5,127.8,126.2,115.8,112.3,54.5$, 49.1, 42.2, 33.6, 32.9, 32.2, 30.3, 24.0, 23.9, 20.6, 18.3; HRMS (ESI): m/z $[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{~N}_{2}{ }^{+}: 351.2795$, found: 351.2795 . $[\alpha]^{25}{ }_{\mathrm{D}}+96.8\left(c=0.080, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
HPLC for (R)-4a: Chiralcel OD-H, 99:1 Hexanei-PrOH, $25^{\circ} \mathrm{C}, 254 \mathrm{~nm}, 0.8 \mathrm{~mL} / \mathrm{min}$.


(R)-2-(2,6-diethylphenyl)-9-isopropyl-5,5-dimethyl-3,3a,4,5-tetrahydro-2H-imidazo[1,5-a]quinolin-10-ium tetrafluoroborate ((R)-5b)


Following the general procedure, imidazolinium salts $\mathbf{2 b}$ ( $1.8 \mathrm{~g}, 3.43 \mathrm{mmol}, 1.0 \mathrm{eq}$.) dissolved in THF 15 mL , and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ( $576 \mathrm{mg}, 5.15 \mathrm{mmol}, 1.5 \mathrm{eq}$.); THF 15 mL , $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ ( $461 \mathrm{mg}, 4.12$ mmol, 1.2 eq.) and $\mathrm{LiAlH}_{4}(196 \mathrm{mg}, 5.15 \mathrm{mmol}, 1.5 \mathrm{eq})$, afforded $\mathbf{3 b}$ as yellow oill ( 640 mg , 52\%); 3b ( $640 \mathrm{mg}, 1.76 \mathrm{mmol}, 1.0$ eq.) dissolved in PhCl 10 mL , amd $\mathrm{AlCl}_{3}$ ( $586 \mathrm{mg}, 4.40$ mmol, 2.5 eq ), afforded $\mathbf{4 b}$ as yellow oill ( $300 \mathrm{mg}, 49 \%$ ); $\mathbf{4 b}$ ( $300 \mathrm{mg}, 0.82 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) dissolved in $\mathrm{HC}(\mathrm{OEt})_{3} 6 \mathrm{~mL}$, and $\mathrm{NH}_{4} \mathrm{BF}_{4}(103 \mathrm{mg}, 0.98 \mathrm{mmol}, 1.2 \mathrm{eq})$, afforded (R)-5b as brown powder ( $205 \mathrm{mg}, 54 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.76(\mathrm{~s}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}$, $2 \mathrm{H}), 7.35-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.10(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=12.0 \mathrm{~Hz}$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.56(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.35-1.29(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
$155.0,141.2,141.0,139.8,139.5,131.0,128.4,128.1,127.7,127.3,126.9,125.6,125.4$, $115.0,63.0,58.3,57.7,53.4,44.2,34.6,32.3,31.1,31.0,27.5,24.4,24.1,23.8,15.6,14.6$; HRMS (EI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$calcd. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2}{ }^{+}: 375.2800$, found: 375.2785. $[\alpha]^{25}{ }_{\mathrm{D}}+192(c$ $=0.050, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
(R)-9-isopropyl-2-mesityl-5,5-dimethyl-3,3a,4,5-tetrahydro-2H-imidazo[1,5-a]quinolin-10-ium ((R)-5c)


Following the general procedure, imidazolinium salts $2 \mathrm{c}(1.0 \mathrm{~g}, 1.96 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) dissolved$ in THF 10 mL , and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}\left(330 \mathrm{mg}, 2.94 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$.); THF $10 \mathrm{~mL}, \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(263 \mathrm{mg}, 2.35$ mmol, 1.2 eq.) and $\mathrm{LiAlH}_{4}(112 \mathrm{mg}, 2.94 \mathrm{mmol}, 1.5 \mathrm{eq})$, afforded $\mathbf{3 c}$ as yellow oill $(464 \mathrm{mg}$, $68 \%$ ); 3c ( $464 \mathrm{mg}, 1.32 \mathrm{mmol}, 1.0$ eq.) dissolved in PhCl 10 mL , amd $\mathrm{AlCl}_{3}$ ( $440 \mathrm{mg}, 3.31$ mmol, 2.5 eq ), afforded $\mathbf{4 c}$ as yellow oill ( $282 \mathrm{mg}, 61 \%$ ); $\mathbf{4 c}(282 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.0 \mathrm{eq})$ dissolved in $\mathrm{HC}(\mathrm{OEt})_{3} 6 \mathrm{~mL}$, and $\mathrm{NH}_{4} \mathrm{BF}_{4}(101 \mathrm{mg}, 0.96 \mathrm{mmol}, 1.2 \mathrm{eq})$, afforded ( $\mathbf{R}$ )-5c as brown powder ( $214 \mathrm{mg}, 59 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.77(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 5.15-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 6 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=12.0 \mathrm{~Hz} 1 \mathrm{H}), 2.21(\mathrm{dd}, J=$ $13 . .2 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=155.0,141.1,139.9,139.4,134.9,130.3,129.9,128.5$, $128.1,125.7,125.6,58.4,56.6,44.3,34.7,32.5,31.2,31.0,27.7,24.5,24.3,17.7$; HRMS (EI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2}^{+}$:361.2644, found: 361.2642. $[\alpha]^{25}{ }_{\mathrm{D}}+88.3(c=0.050$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
(3aR)-9-isopropyl-2-mesityl-5-methyl-3,3a,4,5-tetrahydro-2H-imidazo[1,5-a]quinolin-10ium tetrafluoroborate ((R)-5d)


Following the general procedure, imidazolinium salts $\mathbf{2 d}$ ( $620 \mathrm{mg}, 1.25 \mathrm{mmol}, 1.0$ eq.) dissolved in THF 10 mL , and $\mathrm{KO}^{\dagger} \mathrm{Bu}\left(210 \mathrm{mg}, 1.88 \mathrm{mmol}, 1.5 \mathrm{eq}\right.$.); THF $10 \mathrm{~mL}, \mathrm{KO}^{\mathrm{t}} \mathrm{Bu}(168$
$\mathrm{mg}, 1.50 \mathrm{mmol}, 1.2$ eq.) and $\mathrm{LiAlH}_{4}(72 \mathrm{mg}, 1.88 \mathrm{mmol}, 1.5 \mathrm{eq})$, afforded 3d as yellow oill ( $291 \mathrm{mg}, 69 \%$ ); 3d ( $291 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.0$ eq.) dissolved in $\mathrm{CHCl}_{3} 5 \mathrm{~mL}$, amd $\mathrm{H}_{2} \mathrm{SO}_{4} 1.0$ mL , afforded $\mathbf{4 d}$ as yellow oill ( $214 \mathrm{mg}, 74 \%$ ); $\mathbf{4 d}$ ( $214 \mathrm{mg}, 0.64 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) dissolved in $\mathrm{HC}(\mathrm{OEt})_{3} 5 \mathrm{~mL}$, and $\mathrm{NH}_{4} \mathrm{BF}_{4}(80 \mathrm{mg}, 0.76 \mathrm{mmol}, 1.2 \mathrm{eq})$, afforded $(\mathbf{R})-\mathbf{5 d}$ as yellow powder ( $200 \mathrm{mg}, 72 \%$ ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.78(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H})$, 5.04-4.97 (m, 1H), 4.73 (t, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=12.4 \mathrm{~Hz}, 3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.27(\mathrm{~m}$, $1 \mathrm{H}), 3.07-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 6 \mathrm{H}), 2.09-2.00(\mathrm{~m} 1 \mathrm{H}), 1.48$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=155.1,141.0,140.0,135.2,134.9,130.3,129.9,129.2,128.5,126.4,125.5,60.9$, $56.5,38.1,31.2,27.5,24.3,24.1,21.7,21.0,17.6$; $\mathrm{HRMS}(\mathrm{EI}): \mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$calcd. for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2}{ }^{+}: 347.2487$, found: 347.2486. $[\alpha]^{25}{ }_{\mathrm{D}}+100\left(c=0.035, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

## Synthesis of NHC-Au complex 6



Scheme S-4: Synthesis of NHC-Au complex.

## ((3aR)-9-isopropyl-2-mesityl-5,5-dimethyl-1,2,3,3a,4,5-hexahydroimidazo[1,5-a]quinolin-1-

 yl)gold(II) chloride (6)

6
Imidazolinium salts ( $\mathbf{R}$ )-5c ( $50 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ eq.) was dissolved in dry THF in 25 mL Schlenk tube, and $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}\left(14 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.1 \mathrm{eq}\right.$.) was added, the added $\mathrm{AuCl}\left(\mathrm{Me}_{2} \mathrm{~S}\right)(33$
$\mathrm{mg}, 0.11 \mathrm{mmol}, 1.0 \mathrm{eq}$. ), The mixture was stirred at room temperature for 5 h . After full conversion of the ( $\mathbf{R} \mathbf{)}-5 \mathbf{c}$, monitored by TLC, then pre-absorbed on silica gel and purified by chromatography on silica gel to give the product $\mathbf{6}$ as yellow solid ( $40 \mathrm{mg}, 63 \%$ ). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.29-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 4.34-4.26(\mathrm{~m}, 1 \mathrm{H})$, 4.13-4.01 (m, 2H), $3.56(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $2.14(\mathrm{dd}, J=13.6 \mathrm{~Hz}, 10.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dd}, J=13.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=$ 195.7, 143.3, 140.2, 139.0, 135.4, 135.2, 134.6, 133.5, 129.9, 129.8, 127.4, 124.9, 123.7, 58.0, $56.8,53.4,46.0,34.3,32.1,31.5,28.7,25.7,21.5,21.0,18.2,17.9 ;$ HRMS (ESI): m/z [M - Cl $+\mathrm{MeCN}]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{AuN}_{3}{ }^{+}: 598.2491$, found: 598.2486. $[\alpha]^{25} \mathrm{D}+128(c=0.050$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).

## NMR Spectra:

1a




1b





||il||



2a




2b


(R)-2b


2c





2d






| $\left.\right\|_{1} ^{\text {®. }}$ |  |  <br>  |
| :---: | :---: | :---: |




5b




5c









## X-Ray Crystallography

Each crystal was mounted on a glass fiber. Crystallographic measurements were made on a Bruker Smart Apex 100 CCD area detector using graphite monochromated MoKaradiation ( $\lambda_{\mathrm{Mo}-\mathrm{K} \alpha}=0.71073 \AA$ ). The structures were solved by directed methods (SHELXS97) and refined on $F^{2}$ by full-matrix least squares (SHELX-97) using all unique data. All the calculations were carried out with the SHELXTL18 program.

Key details of the crystal and structure refinement data are summarized in Table S1. Further crystallographic details may be found in the respective CIF files, which were deposited at the Cambridge Crystallographic Data Centre, Cambridge. CCDC-2011334 (6) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S1. Crystal Data, Data Collection, and Structure Refinement for 6.

|  | 6 |
| :---: | :---: |
| Identification code | a21113a |
| Formula | $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{AuClN}_{2}$ |
| Formula weight | 592.94 |
| $T, \mathrm{~K}$ | 293(2) |
| crystal system | Orthorhombic |
| space group | P2(1)2(1)2(1) |
| $a, \AA$ | 12.530(6) |
| $b, \AA$ | 12.767(6) |
| $c, \AA$ | 15.210(7) |
| $\alpha$, deg | 90 |
| $\beta$, deg | 90 |
| $\gamma, \operatorname{deg}$ | 90 |
| Volume, $\AA^{3}$ | 2433.3(19) |
| $Z$ | 4 |
| $\begin{gathered} D_{\text {calc, }}, \mathrm{Mg} / \mathrm{m}^{3} \\ \text { absorption } \end{gathered}$ | 1.619 |
| coefficient, mm 1 | 6.169 |
| $F(000)$ | 1168 |
| crystal size, mm | $0.31 \times 0.16 \times 0.12$ |
| $2 \theta$ range, deg | 2.08 to 26.00 |
| reflections | 10930 / 47778 [R(int) |
| collected/unique | $=0.0587]$ |
| data / restraints/ parameters | 4778 / 0 / 269 |
| goodness of fit on $\mathrm{F}^{2}$ | 0.974 |
| final R indices | $\mathrm{R} 1=0.0330, \mathrm{wR} 2=$ |
| $[I>2 \sigma(I)]^{a}$ | 0.0715 |
| R indices | $\mathrm{R} 1=0.0386, \mathrm{wR} 2=$ |
| (all data) | 0.0730 |
| largest diff. peak and hole, e/ $/ \AA^{3}$ | 1.418 and -1.030 |

## References:

[1] J. Zhang, X. Su, J. Fu, M. Shi, Chem. Commun., 2011, 47, 12541-12543.
[2] M. Dai, I. J. Krauss, S. J. Danishefsky, J. Org. Chem., 2008, 73, 9576-9583.
[3] T. Spangenberg, S. Aubry, Y. Kishi, Tetrahedron Lett., 2010, 51, 1782-1785.

