Vilsmeier reagent, NaHSe and diclofenac acid chloride: onepot synthesis of a novel selenoindolinone with potent anticancer activity

Ana Carolina Ruberte, ${ }^{\text {a }}$ Carlos Aydillo, ${ }^{\text {a }}$ Arun K. Sharma, ${ }^{\text {b }}$ Carmen Sanmartín, ${ }^{* a}$ Daniel Plano ${ }^{\text {a }}$
${ }^{\text {a }}$ Universidad de Navarra, Facultad de Farmacia y Nutrición, Departamento de Tecnología y Química Farmacéuticas, Irunlarrea 1, E-31008 Pamplona, Spain. Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea, 3, 31008 Pamplona, Spain
${ }^{\text {b }}$ Penn State College of Medicine, Penn State Cancer Institute, CH72, Department of Pharmacology, 500 University Drive, Hershey, Pennsylvania 17033, United States

*Correspondence: sanmartin@unav.es; Tel.: +34-948425600 ext. 806388

Table of Contents

I. General information (Table S1)

II. Methods
II.1. Synthetic procedure
II.1.1. 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetyl chloride (2)
II.1.2. 1-(2,6-dichlorophenyl)indolin-2-one (3)
II.1.3. Alkali metal salt of hydroselenide
II.1.4. 1-(2,6-dichlorophenyl)-2-(methylselanyl)-1H-indole (4)
II.1.5. Reaction optimization of ((E)-1-(2,6-dichlorophenyl)-3-
((methylselanyl)methylene)indolin-2-one (5)
II.2. Quantitative NMR (qNMR)
II.3. X-ray diffractometry procedure for compound 5
II.4. Biological evaluation for compound 5
III. Results
III.1. Synthesis
III.1.1. 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetyl chloride (1) (Table S2)
III.1.2. 1-(2,6-dichlorophenyl)indolin-2-one (3) (Table S3)
III.1.3. Alkali metal salt of hydroselenide (Table S4)
III.1.4. ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5) (Table S5)
III.1.5. Reaction optimization of ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5) (Table S6)
III.1.6. Optimization of reagent addition sequence for derivative 5 (Table S7)
III.2. X-ray diffractometry data for compound 5 (Tables S8-15)
III.3. Biological evaluation for compound 5
III.3.1. NCI-60 screening data for compound 5 (Figure S1)
IV. Spectroscopic characterization for compound 3 and 5.
IV.1. 1-(2,6-dichlorophenyl)indolin-2-one (3)
IV.2. ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5)
IV.3. NMR spectra and quantitative NMR (qNMR) (Figures S2-S7)
V. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra for reaction in the synthesis of 2-(2-((2,6dichlorophenyl)amino)phenyl)acetyl chloride (2) (Figures S8-S9).
VI. ${ }^{77}$ Se-NMR spectra for reaction crudes in the synthesis of alkali metal salts of hydroselenide (Figures S10-S14)
VII. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with dimethylsulfone for quantification of crude mixture
VII.1. 1-(2,6-dichlorophenyl)indolin-2-one (3) (Figures S15-S19)
VII.2. Optimization of cyclization with N, N- dimethylformamide (Figures S20-S22)

I. General information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured with tetramethylsilane as an internal standard, on a Bruker Avance 600 and Bruker Avance Neo 400 instruments in CDCl3, operating at 400,500 or 600 , and 100, 125 or 150 MHz , respectively. Chemical shifts are reported in δ values (ppm) and coupling constants (J) values are reported in Hz . ${ }^{77}$ Se NMR spectra were recorded on a Bruker Avance Neo 400 operating at 76 MHz , using $\mathrm{Me}_{2} \mathrm{Se}_{2}$ as external reference. Melting points were taken with a micro melting point apparatus. The most of starting materials and solvents were purchased from commercial suppliers and were used as received. Reaction courses were monitored by thin-layer chromatography (TLC) on precoated silica gel 60 F254 aluminum sheets (Merck, Darmstadt, Germany). The crude reaction product was purified by silica gel column chromatography using silica gel $60 \AA$ (Merck, 230-400 mesh), and hexane/ ethyl acetate (Table S1) was used as the elution solvent.

Table S1. Eluent ratios used for chromatographic column purification of compounds $\mathbf{3}$ and $\mathbf{5}$, both obtained from the same reaction crude, CV meaning column volume.

Mix Solvent	Rf values [hexane : ethyl acetate; $8: 2$)]
3 CV of hexane	0.89
3 CV of hexane $:$ ethyl acetate $(95: 5)$	0.53
3 CV of hexane $:$ ethyl acetate $(93: 7)$	0.41 (Compound. $\mathbf{3})$
4 CV to hexane $:$ ethyl acetate $(92: 8)$	0.35 (Compound. 5)

II. Methods

II.1. Synthetic procedure

II.1.1. 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetyl chloride (2)

Diclofenac sodium was dissolved in distilled water until a homogeneous solution was obtained. Then, excess of concentrated hydrochloric acid was added to obtain pure diclofenac acid as a precipitate ${ }^{1}$.

Procedure A: The chlorination of diclofenac (1) was attempted by reaction of the previously obtained diclofenac acid ($2 \mathrm{~g}, 8.8 \mathrm{mmol}$) with an excess of thionyl chloride $(6.40 \mathrm{~mL}, 88 \mathrm{mmol})$, under reflux for $2 \mathrm{~h}^{2}$. The resulting acyl chloride was isolated by rotatory evaporation of the thionyl chloride under reduce pressure and the excess of thionyl chloride was removed with 3 fractions of toluene ($3 \times 40 \mathrm{~mL}$).

Procedure B: The chlorination of diclofenac (1) was attempted by reaction of the previously obtained diclofenac acid ($2 \mathrm{~g}, 8.8 \mathrm{mmol}$) in methylene chloride (DCM) (20 mL) with oxalyl chloride ($2.34 \mathrm{~mL}, 26.4 \mathrm{mmol}$) at room temperature (RT) for 2 to $72 \mathrm{~h}^{3}$. The resulting acyl chloride was isolated by rotatory evaporation of the DCM under reduce pressure.

Procedure C: The chlorination of diclofenac (1) was achieved by reaction of the previously obtained diclofenac acid ($2 \mathrm{~g}, 8.8 \mathrm{mmol}$) in DCM (20 mL) with oxalyl chloride $(2.34 \mathrm{~mL}, 26.4 \mathrm{mmol})$ and N, N-dimethylformamide ($0.34 \mathrm{~mL}, 4.4 \mathrm{mmol}$) at RT for $2 \mathrm{~h}^{3}$. The resulting acyl chloride was isolated by rotatory evaporation of the DCM under reduce pressure.

II.1.2. 1-(2,6-dichlorophenyl)indolin-2-one (3)

The reaction was performed with 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetyl chloride (2) ($2 \mathrm{~g}, 6.4 \mathrm{mmol}$) and $\mathrm{LiAlH}(\mathrm{OtBu})_{3}(1.6 \mathrm{~g}, 6.4 \mathrm{mmol}), \mathrm{NaBH}_{3} \mathrm{CN}(0.4 \mathrm{~g}, 6.4$ $\mathrm{mmol}), \mathrm{NaBH}_{4}(0.3 \mathrm{~g}, 6.4 \mathrm{mmol}), \mathrm{LiEt}_{3} \mathrm{BH}(0.7 \mathrm{~g}, 6.4 \mathrm{mmol})$ or $\mathrm{LiAlH}_{4}(0.2 \mathrm{~g}, 6.4 \mathrm{mmol})$, in a mixture of water $(18 \mathrm{~mL})$ and tetrahydrofuran $(2 \mathrm{~mL})$ as solvent at RT for 2 h . Then, the reactions mixtures were extracted with DCM ($3 \times 20 \mathrm{~mL}$). The organic layers were dried with magnesium sulfate and concentrated under reduce pressure.
II.1.3. Alkali metal salt of hydroselenide

The reaction was performed with elemental selenium ($0.5 \mathrm{~g}, 6.4 \mathrm{mmol}$) and the corresponding hydride previously used $\left[\mathrm{LiAlH}(\mathrm{OtBu})_{3}(1.6 \mathrm{~g}, 6.4 \mathrm{mmol}), \mathrm{NaBH}_{3} \mathrm{CN}(0.4\right.$ $\mathrm{g}, 6.4 \mathrm{mmol}), \mathrm{NaBH}_{4}(0.3 \mathrm{~g}, 6.4 \mathrm{mmol}), \mathrm{LiEt}_{3} \mathrm{BH}(0.7 \mathrm{~g}, 6.4 \mathrm{mmol})$ or $\mathrm{LiAlH}_{4}(0.2 \mathrm{~g}, 6.4$ $\mathrm{mmol})$] in water (5 mL) as solvent at RT for 10 min .

II.1.4. 1-(2,6-dichlorophenyl)-2-(methylselanyl)-1H-indole (4)

Procedure A: The reaction was carried out using derivative $2(2 \mathrm{~g}, 6.4 \mathrm{mmol})$, oxalyl chloride ($0.28 \mathrm{~mL}, 3.2 \mathrm{mmol}$) and N, N-dimethylformamide ($0.25 \mathrm{~mL}, 3.2 \mathrm{mmol}$), elemental selenium $(0.5 \mathrm{~g}, 6.4 \mathrm{mmol})$ and $\mathrm{LiAlH}(\mathrm{OtBu})_{3}(3.2 \mathrm{~g}, 12.8 \mathrm{mmol})$ in a mixture of water and tetrahydrofuran (9: 1) at RT for 2 h . Then, iodomethane ($1.2 \mathrm{~mL}, 19.2$ mmol) was added to the mixture and the reaction was stirred at RT for 8 days.

Procedure B: The reaction was carried out using derivative 2 ($2 \mathrm{~g}, 6.4 \mathrm{mmol}$), oxalyl chloride ($0.28 \mathrm{~mL}, 3.2 \mathrm{mmol}$) and N, N-dimethylformamide ($0.25 \mathrm{~mL}, 3.2 \mathrm{mmol}$), elemental selenium $(0.5 \mathrm{~g}, 6.4 \mathrm{mmol})$ and $\mathrm{LiAlH}(\mathrm{OtBu})_{3}(3.2 \mathrm{~g}, 12.8 \mathrm{mmol})$ in a mixture of water and tetrahydrofuran (9: 1) at RT for 2 h . Then, iodomethane ($1.2 \mathrm{~mL}, 19.2$ $\mathrm{mmol})$ was added to the mixture and the reaction was stirred under reflux for 2 hours.
Procedure C: The reaction was carried out using derivative 2 ($2 \mathrm{~g}, 6.4 \mathrm{mmol}$), oxalyl chloride ($0.28 \mathrm{~mL}, 3.2 \mathrm{mmol}$) and N, N-dimethylformamide ($0.25 \mathrm{~mL}, 3.2 \mathrm{mmol}$), elemental selenium ($0.5 \mathrm{~g}, 6.4 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.5 \mathrm{~g}, 12.8 \mathrm{mmol})$ in a mixture of water and tetrahydrofuran (9: 1) at RT for 2 h . Then, iodomethane ($1.2 \mathrm{~mL}, 19.2 \mathrm{mmol}$) was added to the mixture and the reaction was stirred at RT for 24 h .

The reaction mixture was extracted with methylene chloride ($3 \times 20 \mathrm{~mL}$). The organic layers were combined and dried over magnesium sulfate and concentrated under reduced pressure.
II.1.5. Reaction optimization of ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5)

The chlorination of diclofenac was optimized by reaction of diclofenac acid ($2 \mathrm{~g}, 8.8$ mmol) in DCM (20 mL) with oxalyl chloride ($2.34 \mathrm{~mL}, 26.4 \mathrm{mmol}$) and N, N dimethylformamide (4.4 mmol) at RT for 2 h . The resulting compound 2 was isolated by rotatory evaporation under vacuum. Then, compound 2 ($2 \mathrm{~g}, 6.4 \mathrm{mmol}$), oxalyl chloride ($0.28 \mathrm{~mL}, 3.2 \mathrm{mmol}$) and N, N-dimethylformamide ($3.2,6.4$ or 9.6 mmol), elemental selenium ($0.5 \mathrm{~g}, 6.4 \mathrm{mmol}$) and $\mathrm{NaBH}_{4}(0.5 \mathrm{~g}, 12.8 \mathrm{mmol})$ were mixed in water and tetrahydrofuran (9: 1) at RT. After 30 min, iodomethane ($1.2 \mathrm{~mL}, 19.2 \mathrm{mmol}$) was added to the reaction and stirred at RT for 24 h . Finally, reaction mixture was extracted
with DCM ($3 \times 20 \mathrm{~mL}$) and the organic layers were combined and dried over magnesium sulfate and concentrated under reduced pressure.

II.2. Quantitative NMR (qNMR)

Quantitative NMR (qNMR) were registered on a Bruker Avance Neo 400 spectrometer using dimethyl sulfone (SigmaAldrich, Ref. \#: 41867, CAS \#: 67-71-0) as standard to determine the purity of compound 5 4,5.

II.3. X-ray diffractometry procedure for compound 5

Single crystals of ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2one (5), were grew from the solution of hexane. A suitable crystal was selected and mounted on a 'CCD area detector' diffractometer (Bruker SMART-APEX), using a nylon loop. The crystal was at 298 K during data collection. Using Olex 2^{6}, the structure was solved with the XS structure solution program using Direct Methods and refined with the $\mathrm{XL}{ }^{7}$ refinement package using Least Squares minimization.

II.4. Biological evaluation for compound 5

Compound 5 was submitted to the National Cancer Institute's (NCI) Developmental Therapeutics Program (DTP) where its cytotoxicity was screened towards a panel of 60 human cancer cell lines, at one dose and 48 h of treatment ${ }^{8-11}$. Briefly, cells were seeded in 96 well plates and incubated for 24 h . Then, some of the plates were processed to determine the zero time density, and compound 5 were added at $10 \mu \mathrm{M}$ on the remaining plates. Plates were incubated 48 h with the treatment and then fixed and stained with sulforhodamine B. Growth inhibition is calculated relative to cells without drug treatment and the zero time control.

III. Results

III.1. Synthesis

III.1.1. 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetyl chloride (2)

Table S2. Synthesis conditions to obtain 2-(2-((2,6-dichlorophenyl)amino)phenyl)acetyl chloride (2).

III.1.2. 1-(2,6-dichlorophenyl)indolin-2-one (3)

Table S3. The hydride used for cyclization reaction to obtain 1-(2,6-dichlorophenyl)indolin-2-one (3).

III.1.3. Alkali metal salts of hydroselenide

Table S4. Synthesis of alkali metal salts of hydroselenide.

III.1.4. ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5)

Table S5. Synthetic scheme and conditions for derivative 5.

III.1.5. Reaction optimization of ((E)-1-(2,6-dichlorophenyl)-3- ((methylselanyl)methylene)indolin-2-one (5)

Table S6. Optimization of reaction conditions for derivative 5.

${ }^{\text {a }}$ Estimated yields of $\mathbf{3}$ and $\mathbf{5}$ determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.
${ }^{\mathrm{b}}$ No reaction

III.1.6. Optimization of reagent addition sequence for derivative $\mathbf{5}$

Table S7. Optimization of reagent addition sequence for derivative 5.

Order of addition for the reagents after formation of NaHSe			
Comp. 2	Mel	Vilsmeier reagent	Yield (\%)
1	1	1	$6^{\text {a }}$
1	2	2	10

${ }^{\text {a }}$ Estimated yields for compound 5 determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

III.2. X-ray diffractometry data for compound 5 (CCDC 1983076)

Table S8. Crystal data and structure refinement.

Identification code	aks14 (Comp. 5)
Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{NOSe}$
Formula weight	383.12
Temperature/K	298
Crystal system	monoclinic
Space group	P2 ${ }_{1} / \mathrm{c}$
a/Å	8.3923(9)
b/Å	12.7253(14)
c/Å	14.6560(15)
$\alpha /{ }^{\circ}$	90.00
$\beta /{ }^{\circ}$	90.072(2)
$\mathrm{V} /{ }^{\circ}$	90.00
Volume/Å ${ }^{3}$	1565.2(3)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.626
μ / mm^{-1}	2.737
F(000)	760.0
Crystal size/mm ${ }^{3}$	$0.21 \times 0.15 \times 0.11$
Radiation	MoKa ($\lambda=0.71073$)
20 range for data collection/ ${ }^{\circ}$	4.24 to 56.66
Index ranges	$-10 \leq h \leq 11,-16 \leq k \leq 16,-19 \leq 1 \leq 19$
Reflections collected	13375
Independent reflections	$3859\left[\mathrm{R}_{\text {int }}=0.0227, \mathrm{R}_{\text {sigma }}=0.0301\right]$
Data/restraints/parameters	3859/0/191
Goodness-of-fit on F^{2}	1.037
Final R indexes [$1>=2 \sigma$ (1]]	$\mathrm{R}_{1}=0.0365, \mathrm{wR}_{2}=0.0966$

Final R indexes [all data] $\quad \mathrm{R}_{1}=0.0531, \mathrm{wR}_{2}=0.1049$
Largest diff. peak/hole /e $\AA^{-3} \quad 0.50 /-0.24$

Table S9. Fractional Atomic Coordinates ($\times 104$) and Equivalent Isotropic Displacement Parameters (Å 2×103) for compound 5 . Ueq is defined as $1 / 3$ of of the trace of the orthogonalised UIJ tensor.

Atom	x	y	z	$\mathrm{U}(\mathrm{eq})$
Se1	$1006.7(3)$	$5009.3(2)$	$6621.68(16)$	$53.51(12)$
Cl2	$2002.5(9)$	$3902.2(5)$	$2002.0(5)$	$63.5(2)$
C13	$4419.8(10)$	$895.6(7)$	$4197.9(5)$	$75.8(2)$
O1	$4211(2)$	$4226.3(14)$	$4013.9(12)$	$58.9(5)$
N1	$2510(2)$	$2825.8(15)$	$3800.9(12)$	$42.7(4)$
C1	$3345(2)$	$2389.7(18)$	$3045.4(14)$	$40.6(5)$
C2	$4319(3)$	$1525(2)$	$3147.0(16)$	$48.1(5)$
C3	$5210(3)$	$1137(2)$	$2428.3(18)$	$58.0(7)$
C4	$5147(3)$	$1634(2)$	$1596.7(17)$	$56.9(7)$
C5	$4182(3)$	$2493(2)$	$1469.8(16)$	$52.0(6)$
C6	$3273(3)$	$2856.1(18)$	$2190.8(15)$	$42.7(5)$
C7	$1144(3)$	$2417.1(18)$	$4230.8(14)$	$42.1(5)$
C8	$283(3)$	$1534(2)$	$4010.9(19)$	$60.4(7)$
C9	$-1031(4)$	$1304(2)$	$4552(2)$	$70.6(8)$
C10	$-1455(3)$	$1938(2)$	$5270(2)$	$66.9(8)$
C11	$-580(3)$	$2818(2)$	$5488.4(17)$	$54.2(6)$
C12	$749(3)$	$3069.4(18)$	$4972.8(14)$	$40.2(5)$
C13	$1920(3)$	$3908.9(17)$	$5009.0(13)$	$38.4(5)$
C14	$3039(3)$	$3729.0(18)$	$4239.3(14)$	$42.6(5)$
C15	$2191(3)$	$4699.4(19)$	$5594.0(14)$	$42.0(5)$
C16	$2231(4)$	$6197(3)$	$7057(2)$	$81.1(10)$

Table S10. Anisotropic Displacement Parameters ($\AA 2 \times 103$) for compound 5. The Anisotropic displacement factor exponent takes the form: $-2 \pi 2\left[\mathrm{~h} 2 \mathrm{a}^{*} 2 \mathrm{U} 11+2 \mathrm{hka} \mathrm{hb}^{*} \mathrm{U} 12+\ldots\right]$.

Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
Se1	$57.03(19)$	$61.8(2)$	$41.73(15)$	$-12.05(10)$	$4.76(11)$	$6.51(11)$
Cl2	$69.0(4)$	$54.5(4)$	$66.8(4)$	$5.2(3)$	$-0.7(3)$	$9.3(3)$
CI3	$92.9(6)$	$78.4(5)$	$56.3(4)$	$11.9(3)$	$-3.1(4)$	$20.9(4)$
O1	$63.5(11)$	$57.9(11)$	$55.3(10)$	$-12.7(8)$	$17.2(8)$	$-23.3(9)$
N1	$46.4(11)$	$41.1(10)$	$40.8(9)$	$-10.4(7)$	$9.5(8)$	$-6.9(8)$
C1	$40.6(12)$	$41.0(12)$	$40.2(11)$	$-8.6(9)$	$6.0(9)$	$-5.1(9)$
C2	$52.1(13)$	$49.2(14)$	$42.8(11)$	$-6.2(10)$	$0.0(10)$	$1.2(11)$
C3	$54.8(15)$	$54.7(16)$	$64.7(16)$	$-13.9(12)$	$5.8(12)$	$12.0(12)$
C4	$54.6(15)$	$63.9(17)$	$52.2(14)$	$-18.3(12)$	$14.8(11)$	$-3.2(13)$
C5	$58.6(15)$	$56.5(15)$	$40.8(11)$	$-4.6(10)$	$8.5(10)$	$-11.3(12)$
C6	$43.1(12)$	$40.6(12)$	$44.3(11)$	$-3.7(9)$	$3.6(9)$	$-3.7(9)$
C7	$42.1(12)$	$41.5(12)$	$42.6(11)$	$-2.2(9)$	$6.3(9)$	$-2.3(10)$
C8	$59.2(16)$	$56.2(16)$	$65.7(16)$	$-18.7(12)$	$14.4(13)$	$-13.8(13)$
C9	$62.1(18)$	$63.9(19)$	$86(2)$	$-17.4(15)$	$19.4(15)$	$-23.2(14)$
C10	$54.4(16)$	$77(2)$	$69.4(17)$	$-8.3(15)$	$20.4(13)$	$-19.9(14)$
C11	$50.6(14)$	$62.4(17)$	$49.5(13)$	$-6.7(11)$	$12.7(11)$	$-2.1(12)$
C12	$42.1(12)$	$40.2(12)$	$38.2(10)$	$-1.5(9)$	$1.8(9)$	$2.7(10)$
C13	$43.1(12)$	$39.1(12)$	$32.9(10)$	$-1.4(8)$	$1.4(8)$	$2.5(9)$
C14	$47.4(13)$	$43.7(13)$	$36.6(10)$	$-5.2(9)$	$3.9(9)$	$-4.1(10)$
C15	$46.1(13)$	$42.7(12)$	$37.1(11)$	$-2.6(9)$	$-1.2(9)$	$4.5(10)$
C16	$74(2)$	$85(2)$	$84(2)$	$-48.0(18)$	$1.1(16)$	$-5.7(16)$

Table S11. Bond Lengths for compound 5.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Se1	C15	$1.848(2)$	C4	C5	$1.373(4)$
Se1	C16	$1.935(3)$	C5	C6	$1.384(3)$
Cl2	C6	$1.728(2)$	C7	C8	$1.375(3)$
Cl3	C2	$1.738(3)$	C7	C12	$1.408(3)$
O1	C14	$1.216(3)$	C8	C9	$1.389(4)$
N1	C1	$1.424(3)$	C9	C10	$1.373(4)$
N1	C7	$1.408(3)$	C10	C11	$1.377(4)$
N1	C14	$1.389(3)$	C11	C12	$1.385(3)$
C1	C2	$1.379(3)$	C12	C13	$1.453(3)$
C1	C6	$1.387(3)$	C13	C14	$1.487(3)$
C2	C3	$1.383(3)$	C13	C15	$1.341(3)$
C3	C4	$1.374(4)$			

Table S12. Bond Angles for compound 5.

Atom	Atom	Atom	Angle/				
C15	Se1	C16	98.62(12)	C8	C7	Atom	Angle/
C7	N1	C1	$127.27(18)$	C8	C7	C12	$128.7(2)$
C14	N1	C1	$121.66(18)$	C7	C8	C9	$117.1(2)$
C14	N1	C7	$111.01(17)$	C10	C9	C8	$121.4(3)$
C2	C1	N1	$121.3(2)$	C9	C10	C11	$121.1(2)$
C2	C1	C6	$117.6(2)$	C10	C11	C12	$119.4(2)$
C6	C1	N1	$121.0(2)$	C7	C12	C13	$107.54(18)$
C1	C2	Cl3	$119.44(18)$	C11	C12	C7	$118.4(2)$
C1	C2	C3	$121.6(2)$	C11	C12	C13	$134.0(2)$
C3	C2	Cl3	$119.0(2)$	C12	C13	C14	$106.69(18)$
C4	C3	C2	$119.4(2)$	C15	C13	C12	$133.6(2)$
C5	C4	C3	$120.6(2)$	C15	C13	C14	$119.6(2)$
C4	C5	C6	$119.2(2)$	O1	C14	N1	$124.3(2)$
C1	C6	Cl2	$120.03(17)$	O1	C14	C13	$129.7(2)$
C5	C6	Cl2	$118.40(18)$	N1	C14	C13	$106.05(18)$
C5	C6	C1	$121.6(2)$	C13	C15	Se1	$126.18(19)$
N1	C7	C12	$108.71(19)$				

Table S13. Hydrogen Bonds for compound 5.

D	H	A	d(D-H)/A	d(H-A)/A	d(D-A)/A	D-H-A/ ${ }^{\circ}$
C15	$H 15$	O1 1	0.93	2.55	$3.363(3)$	146.7
${ }^{1} 1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$						

Table S14. Torsion Angles for compound 5.

A	B	C	D	Angle/ ${ }^{\circ}$	A	B	C	D	Angle/ ${ }^{\circ}$
Cl3	C2	C3	C4	-179.5(2)	C7	N1	C14	C13	0.0(2)
N1	C1	C2	Cl3	4.8(3)	C7	C8	C9	C10	0.5(5)
N1	C1	C2	C3	-175.9(2)	C7	C12	C13	C14	0.5(2)
N1	C1	C6	Cl 2	-6.6(3)	C7	C12	C13	C15	-175.0(2)
N1	C1	C6	C5	174.5(2)	C8	C7	C12	C11	-1.3(4)
N1	C7	C8	C9	-179.9(3)	C8	C7	C12	C13	179.1(2)
N1	C7	C12	C11	179.2(2)	C8	C9	C10	C11	-0.8(5)
N1	C7	C12	C13	-0.5(2)	C9	C10	C11	C12	0.1(5)
C1	N1	C7	C8	-2.0(4)	C10	C11	C12	C7	0.9(4)
C1	N1	C7	C12	177.5(2)	C10	C11	C12	C13	-179.6(3)
C1	N1	C14	01	1.4(4)	C11	C12	C13	C14	-179.1(3)
C1	N1	C14	C13	-177.38(19)	C11	C12	C13	C15	5.4(4)
C1	C2	C3	C4	1.2(4)	C12	C7	C8	C9	0.6(4)
C2	C1	C6	Cl 2	176.84(17)	C12	C13	C14	01	-179.0(2)
C2	C1	C6	C5	-2.1(3)	C12	C13	C14	N1	-0.3(2)
C2	C3	C4	C5	-1.5(4)	C12	C13	C15	Se1	-1.7(4)
C3	C4	C5	C6	0.1(4)	C14	N1	C1	C2	101.8(3)
C4	C5	C6	Cl 2	-177.18(19)	C14	N1	C1	C6	-74.6(3)
C4	C5	C6	C1	1.8(4)	C14	N1	C7	C8	-179.2(3)
C6	C1	C2	Cl3	-178.70(17)	C14	N1	C7	C12	0.3(3)
C6	C1	C2	C3	0.6(4)	C14	C13	C15	Se1	-176.67(16)
C7	N1	C1	C2	-75.1(3)	C15	C13	C14	01	-2.8(4)
C7	N1	C1	C6	108.5(3)	C15	C13	C14	N1	176.0(2)
C7	N1	C14	01	178.8(2)	C16	Se1	C15	C13	178.5(2)

Table S15. Hydrogen Atom Coordinates ($(\AA \times 104$) and Isotropic Displacement Parameters (\AA A 2×103) for compound 5.

Atom	x	y	z	U(eq)
H3	5845	545	2507	70
H4	5763	1386	1116	68
H5	4141	2827	906	62
H8	567	1108	3522	72
H9	-1635	710	4424	85
H10	-2349	1769	5615	80
H11	-878	3240	5977	65
H15	3057	5133	5471	50
H16A	2238	6737	6601	122
H16B	3304	5978	7181	122
H16C	1757	6464	7606	122

III.3. Biological evaluation for compound $\mathbf{5}$

III.3.1. $\mathrm{NCI}-60$ screening data for compound $\mathbf{5}$

Growth percent (GP) is the growth of treated culture compared to the growth of untreated cells. GP between 0 and 50 means antiproliferative properties and between -100 and 0 stands for cytotoxic properties GP (\%).

Figure S1. NCl-60 chart data for compound 5.

IV. Spectroscopic characterization for compound 3 and 5

IV.1. 1-(2,6-dichlorophenyl)indolin-2-one (3)

A yellow powder was obtained. Overall yield 49%; m.p.: $120-122^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.32$ $(\mathrm{m}, 1 \mathrm{H}), 7.20(\mathrm{td}, 1 \mathrm{H}, J=7.7$ and 0.8 Hz$), 7.09(\mathrm{td}, 1 \mathrm{H}, J=7.6$ and 0.9 Hz$)$, $6.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.8 \mathrm{~Hz}), 3.77(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.62$, 143.33, 135.53, 130.80, 130.48, 129.05, 127.94, 124.83, 124.31, 123.07, 109.15, 35.74 ${ }^{12}$.
IV.2. ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5)

An orange powder was obtained. Overall yield 10%; purity 95.2 \%; m.p.: $173-174{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.46$ (s, 1H), 7.59 (d, 1H, J = 7.3 $\mathrm{Hz}), 7.50(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.7$ and 1.1 Hz), $7.15(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=7.6$ and 0.9 Hz), $6.42(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.7 \mathrm{~Hz}), 2.57(\mathrm{~s}$, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.07,142.00,141.18,136.01$, 130.75, 129.11, 128.50, 125.59, 123.71, 123.20, 122.98, 109.07, 10.25. ${ }^{77} \mathrm{Se}-\mathrm{NMR}$ (76 MHz, CDCl3) $\delta 245 \mathrm{ppm}$.
IV.3. NMR spectra and quantitative NMR (qNMR)

Figure S2. ${ }^{1} \mathrm{H}$-NMR spectrum for 1-(2,6-dichlorophenyl)indolin-2-one (3).

Figure S3. ${ }^{13} \mathrm{C}$-NMR spectrum for 1-(2,6-dichlorophenyl)indolin-2-one (3).

Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5).

Figure S5. ${ }^{13} \mathrm{C}$-NMR spectrum for ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2-one (5).

Figure S6. ${ }^{77}$ Se-NMR spectrum for ((E)-1-(2,6-dichlorophenyl)-3-((methylselanyl)methylene)indolin-2one (5).

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for compound $\mathbf{5}$ and dimethyl sulfone (qNMR).
V. ${ }^{1} \mathrm{H}$-NMR spectra for reaction in the synthesis of 2-(2-($2,6-$ dichlorophenyl)amino)phenyl)acetyl chloride (2).

Figure s8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of reaction in the synthesis of 2-(2-((2,6dichlorophenyl)amino)phenyl)acetyl chloride (2) with thionyl chloride.

Figure s9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of reaction in the synthesis of 2-(2-((2,6dichlorophenyl)amino)phenyl)acetyl chloride (2) with oxalyl chloride.
VI. ${ }^{77}$ Se-NMR spectra for reaction crudes in the synthesis of alkali metal salts of hydroselenide

Figure S10. ${ }^{77}$ Se-NMR spectrum of reaction crude in the synthesis of lithium hydroselenide with AlLiH_{4}.

Figure S11. ${ }^{77}$ Se-NMR spectrum of reaction crude in the synthesis of lithium hydroselenide with $\mathrm{LiEt}_{3} \mathrm{BH}$.

Figure S12. ${ }^{77}$ Se-NMR spectrum of reaction crude in the synthesis of lithium hydroselenide with $\mathrm{LiAlH}(\mathrm{OtBu})_{3}$.

Figure S13. ${ }^{77}$ Se-NMR spectrum of reaction crude in the synthesis of sodium hydroselenide with $\mathrm{NaBH}_{3} \mathrm{CN}$.

Figure S14. ${ }^{77}$ Se-NMR spectrum of reaction crude in the synthesis of sodium hydroselenide with NaBH_{4}.

8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra with dimethylsulfone for quantification of crude mixture

8.1. 1-(2,6-dichlorophenyl)indolin-2-one (3)

Figure S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for reaction crude with AlLiH_{4}.

Figure S16. ${ }^{1} \mathrm{H}$-NMR spectrum for reaction crude with $\mathrm{LiEt}_{3} \mathrm{BH}$.

Figure S17. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for reaction crude with $\mathrm{LiAlH}(\mathrm{OtBu})_{3}$.

Figure S18. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for reaction crude with $\mathrm{NaBH}_{3} \mathrm{CN}$.

Figure S19. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for reaction crude with NaBH_{4}.
8.2. Optimization of cyclization by N, N-dimethylformamide

Figure S20. ${ }^{1} \mathrm{H}$-NMR spectrum for reaction crude with 1.5 eq of N, N - dimethylformamide.

Figure S21. ${ }^{1} \mathrm{H}$-NMR spectrum for reaction crude with 1.0 eq of N, N - dimethylformamide.

Figure S22. ${ }^{1} \mathrm{H}$-NMR spectrum for reaction crude with 0.5 eq of N, N - dimethylformamide.

REFERENCES

1. M. Hanif, M. Rafiq, M. Saleem, G. Qadeer and W. Y. Wong, Acta Crystallogr Sect E Struct Rep Online, 2009, 65, 0583.
2. R. Cassano, S. Trombino, T. Ferrarelli, E. Barone, V. Arena, C. Mancuso and N. Picci, Biomacromolecules, 2010, 11, 1716-1720.
3. D. Plano, D. N. Karelia, M. K. Pandey, J. E. Spallholz, S. Amin and A. K. Sharma, J Med Chem, 2016, 59, 1946-1959.
4. M. Cushman, G. I. Georg, U. Holzgrabe and S. Wang, J Med Chem, 2014, 57, 9219.
5. G. F. Pauli, S. N. Chen, C. Simmler, D. C. Lankin, T. Gödecke, B. U. Jaki, J. B. Friesen, J. B. McAlpine and J. G. Napolitano, J Med Chem, 2014, 57, 9220-9231.
6. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr, 2009, 42, 339-341.
7. G. Sheldrick, Acta Cryst. A 2008, 64, 112-122.
8. R. H. Shoemaker, Nature reviews. Cancer, 2006, 6, 813-823.
9. S. L. Holbeck, J. M. Collins and J. H. Doroshow, Mol Cancer Ther, 2010, 9, 1451-1460.
10. K. D. Paull, R. H. Shoemaker, L. Hodes, A. Monks, D. A. Scudiero, L. Rubinstein, J. Plowman and M. R. Boyd, J Natl Cancer I, 1989, 81, 1088-1092.
11. W. C. Reinhold, S. Varma, F. Sousa, M. Sunshine, O. D. Abaan, S. R. Davis, S. W. Reinhold, K. W. Kohn, J. Morris, P. S. Meltzer, J. H. Doroshow and Y. Pommier, PLoS One, 2014, 9, e101670.
12. M. C. Chung, J. L. dos Santos, E. V. Oliveira, L. Blau, R. F. Menegon and R. G. Peccinini, Molecules (Basel, Switzerland), 2009, 14, 3187-3197.
