Electronic Supplementary Information

Catalyst-free regioselective acetylation of primary hydroxy groups in partially protected and unprotected thioglycosides with acetic acid

Polina I. Abronina, *^a Nelly N. Malysheva, ^a Alexander I. Zinin, ^a Natalya G. Kolotyrkina, ^a Elena V. Stepanova^{a,b} and Leonid O. Kononov^{*a}

^[a] N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, Leninsky prosp., 47, Moscow 119991, Russian Federation.

^[b] Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenin avenue 30, Tomsk 634050, Russian Federation.

e-mail: polina-abronina@yandex.ru, leonid.kononov@gmail.com

Contents

General methods	S 5
General procedure for deprotection of benzylidene acetals 2, 3, 11, 15 and	S6
acetylation of alcohols 4, 16, 17	
Ethyl 4,6- O -benzylidene-1-thio- α -D-galactopyranoside (1)	S6
Ethyl 4,6- <i>O</i> -benzylidene-2,3-bis- <i>O</i> -triisopropylsilyl-1-thio- α -D-galactopyranoside (2)	S7
Ethyl 4,6- O -benzylidene-2,3-bis- O -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside	S7
(3)	
Ethyl 2,3-bis- O -triisopropylsilyl-1-thio- α -D-galactopyranoside (4)	S8
Ethyl 6- O -acetyl-2,3-bis- O -triisopropylsilyl-1-thio- α -D-galactopyranoside (5)	S9
Ethyl 6- O -acetyl-2- O -triisopropylsilyl-1-thio- α -D-galactopyranoside (6)	S9
Ethyl 4- O -acetyl-2,3-bis- O -triisopropylsilyl-1-thio- α -D-galactopyranoside (7)	S9
Ethyl 2,3-bis- <i>O</i> -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside (8)	S10
Ethyl 6- <i>O</i> -acetyl-2,3-bis- <i>O</i> -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside (9)	S10
Ethyl 4- <i>O</i> -acetyl-2,3-bis- <i>O</i> -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside (10)	S11
Ethyl 4- O -acetyl-2,3-di- O -benzyl-1-thio- β -D-galactopyranoside (13)	S11
Ethyl 6- O -acetyl-2,3-di- O -benzyl-1-thio- β -D-galactopyranoside (14)	S12
Phenyl 6- <i>O</i> -acetyl-2,3-di- <i>O</i> -benzyl-1-thio- β -D-glucopyranoside (17)	S12
Phenyl 4- O -acetyl-2,3-di- O -benzyl-1-thio- β -D-glucopyranoside (18)	S12

General procedure for acetylation of thioglycoside 20	S13
Phenyl 6- O -acetyl-1-thio- β -D-glucopyranoside (21)	S13
Phenyl 3,6-di-O-acetyl-1-thio-β-D-glucopyranoside (22)	S13
Phenyl 4,6-di- O -acetyl-1-thio- β -D-glucopyranoside (23)	S14
Phenyl 3,4,6-tri- O -acetyl-1-thio- β -D-glucopyranoside (24)	S14
Tables 1S-5S	S15
References	S16
Copies of NMR spectra	
Ethyl 4,6- O -benzylidene-1-thio- α -D-galactopyranoside 1	
¹ H NMR spectrum of compound 1	S17
¹³ C NMR spectrum of compound 1	S18
COSY spectrum of compound 1	S19
HSQC spectrum of compound 1	S20
HMBC spectrum of compound 1	S21
DEPT spectrum of compound 1	S22
Ethyl 4,6- O -benzylidene-2,3-bis- O -triisopropylsilyl-1-thio- α -D-galactopyranoside 2	
¹ H NMR spectrum of compound 2	S23
13 C NMR spectrum of compound 2	S24
COSY spectrum of compound 2	S25
HSQC spectrum of compound 2	S26
DEPT spectrum of compound 2	S27
Ethyl 4,6- <i>O</i> -benzylidene-2,3-bis- <i>O</i> -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside 3	
¹ H NMR spectrum of compound 3	S28
13 C NMR spectrum of compound 3	S29
COSY spectrum of compound 3	S30
HSQC spectrum of compound 3	S31
HMBC spectrum of compound 3	S32
Ethyl 1-thio-2,3-bis- O -triisopropylsilyl- α -D-galactopyranoside 4	
¹ H NMR spectrum of compound 4	S33
¹³ C NMR spectrum of compound 4	S34
COSY spectrum of compound 4	S35
HSQC spectrum of compound 4	S36
HMBC spectrum of compound 4	S37

Ethyl 6-O-acetyl-1-thio-2,3-bis-O-triisopropylsilyl- α -D-galactopyranoside 5

¹ H NMR spectrum of compound 5 ¹³ C NMR spectrum of compound 5 COSY spectrum of compound 5 HSOC spectrum of compound 5	S38 S39 S40 S41
DEPT spectrum of compound 5	S42
Ethyl 6- O -acetyl-1-thio-2- O -triisopropylsilyl- α -D-galactopyranoside 6	
¹ H NMR spectrum of compound 6	S43
COSY spectrum of compound 6	544 545
HSOC spectrum of compound 6	S45
DEPT spectrum of compound 6	S47
Ethyl 4- O -acetyl-1-thio-2,3-bis- O -triisopropylsilyl- α -D-galactopyranoside 7	
¹ H NMR spectrum of compound 7	S48
¹³ C NMR spectrum of compound 7	S49
COSY spectrum of compound 7	S50
HMBC spectrum of compound 7	S51 S52
Ethyl 2,3-bis- O -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside 8	
¹ H NMR spectrum of compound 8	S53
¹³ C NMR spectrum of compound 8	S54
DEPT spectrum of compound 8	555 556
DEFT spectrum of compound o	550
Ethyl 6- O -acetyl-2,3-bis- O -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside 9	
¹ H NMR spectrum of compound 9	S57
¹³ C NMR spectrum of compound 9	S58
COSY spectrum of compound 9	S59
HSQC spectrum of compound 9 HMBC spectrum of compound 9	S60 S61
DEPT spectrum of compound 9	S61
Ethyl 4- O -acetyl-2,3-bis- O -tert-butyldiphenylsilyl-1-thio- α -D-galactopyranoside 10	
¹ H NMR spectrum of compound 10	S63
¹³ C NMR spectrum of compound 10	S64
USY spectrum of compound 10 HSOC spectrum of compound 10	S65 S66
HMBC spectrum of compound 10	S00 S67
I TITLE I	~ .

Ethyl 4-O-acetyl-2,3-di-O-benzyl-1-thio- β -D-galactopyranoside 13

¹ H NMR spectrum of compound 13 ¹³ C NMR spectrum of compound 13 COSY spectrum of compound 13 HSQC spectrum of compound 13	S68 S69 S70 S71
Ethyl 6- O -acetyl-2,3-di- O -benzyl-1-thio- β -D-galactopyranoside 14	
¹ H NMR spectrum of compound 14	S7 2
¹³ C NMR spectrum of compound 14	S72
COSY spectrum of compound 14	S74
HSQC spectrum of compound 14	S75
HMBC spectrum of compound 14	S76
DEPT spectrum of compound 14	S77
Phenyl 4-O-acetyl-2,3-di-O-benzyl-1-thio-β-D-glucopyranoside 17	
¹ H NMR spectrum of compound 17	S78
Phenyl 4- <i>O</i> -acetyl-2,3-di- <i>O</i> -benzyl-1-thio-β-D-glucopyranoside 18	
¹ H NMR spectrum of compound 18	S79
¹³ C NMR spectrum of compound 18 COSN spectrum of compound 18	S80
HSOC spectrum of compound 18	501 582
DEPT spectrum of compound 18	S83
Phanul 6 Ω acetul 1 this β D gluconvrance de 21	
I henyi 0-0-acetyi-1-unio-p-D-giucopyranoside 21	604
¹³ C NMR spectrum of compound 21 13 C NMR spectrum of compound 21	584 585
COSY spectrum of compound 21	505 586
HSOC spectrum of compound 21	S80 S87
HMBC spectrum of compound 22	S88
DEPT spectrum of compound 21	S89
Phenyl 3,6-di- O -acetyl-1-thio- β -D-glucopyranoside 22	
¹ H NMR spectrum of compound 22	S90
13 C NMR spectrum of compound 22	S91
COSY spectrum of compound 22	S92
HSQC spectrum of compound 22	S93
HMBC spectrum of compound 22	S94
DEPT spectrum of compound 22	895
Phenyl 4,6-di-O-acetyl-1-thio-β-D-glucopyranoside 23	
¹ H NMR spectrum of compound 23	S96
¹³ C NMR spectrum of compound 23	S97
COSY spectrum of compound 23	S98
HSQC spectrum of compound 23	S99

HMBC spectrum of compound 23	S100
DEPT spectrum of compound 23	S101
Phenyl 3,4,6-tri-O-acetyl-1-thio-β-D-glucopyranoside 24	
¹ H NMR spectrum of compound 24	S102

¹³ C NMR spectrum of compound 24	S103
COSY spectrum of compound 24	S104
HSQC spectrum of compound 24	S105
HMBC spectrum of compound 24	S106
DEPT spectrum of compound 24	S107

General methods

All reactions sensitive to air and/or moisture were carried out under argon atmosphere. The reactions were performed with the use of commercial reagents (Aldrich, Fluka, Acros Organics) Anhydrous solvents were purified and dried (where appropriate) according to standard procedures. Column chromatography was performed on silica gel 60 (40–63 μ m, Merck). Thin-layer chromatography was carried out on plates with silica gel 60 on aluminum foil (Merck). Spots of compounds were visualized under UV light and by heating the plates (at *ca.* 150 °C) after immersion in a 1:10 (v/v) mixture of 85% aq H₃PO₄ and 95% EtOH. ¹H and ¹³C NMR spectra were recorded for solutions in Me₂CO-d₆, CDCl₃, or CD₃OD on a Bruker AM-300 instrument (300.13 and 75.48 MHz for ¹H and ¹³C, respectively), a Bruker DRX-400 instrument (400.16 and 100.63 MHz for ¹H and ¹³C, respectively) or on a Bruker AVANCE 600 spectrometer (600.13 and 150.90 MHz for ¹H and ¹³C, respectively). The ¹H NMR chemical shifts are referred to the residual signal of CHCl₃ ($\delta_{\rm H}$ 7.27), CHD₂OD ($\delta_{\rm H}$ 3.31), or CHD₂COCD₃ ($\delta_{\rm H}$ 2.05), the ¹³C NMR shifts – to the central line of CDCl₃ signal ($\delta_{\rm C}$ 77.00), CD₃OD signal ($\delta_{\rm C}$ 49.00) or (CD₃)₂CO signal ($\delta_{\rm C}$ 29.84). Assignments of the signals in the NMR spectra were performed using 2D-spectroscopy (COSY, HSQC, HMBC) and DEPT-135 experiments. High resolution mass spectra (electrospray ionization, HRESIMS) were recorded in positive mode on a Bruker micrOTOF II mass spectrometer for 2×10^{-5} M solutions in MeCN or MeOH. Optical rotations were measured using a JASCO P-2000 automatic digital polarimeter (Japan).

General procedure for deprotection of benzylidene acetals 2, 3, 11, 15 and acetylation of alcohols 4, 16, 17

To thioglycosides 2, 3, 4, 11, 15-17 (0.1–0.5 mmol) 60–100% (v/v) AcOH was added and the reaction mixture (c = 10–100 mmol/L) was stirred at $T \,^{\circ}$ C according to methods A-C (Table 1). Then the reaction mixture was diluted with CH₂Cl₂ (50 mL) and washed with satd aq NaHCO₃ (50 mL). The aqueous layer was extracted with CH₂Cl₂ ($2 \times 5 \,\text{mL}$) and the combined organic extracts were filtered through a cotton wool plug, concentrated, and dried *in vacuo*. The products were purified by silica gel column chromatography in gradient of EtOAc in light petroleum (1–20%) for isolating of silyl (TBDPS or TIPS)-containing thioglycosides **4–10** and in gradient of EtOAc in light petroleum (5–60%) for isolating of benzyl-containing thioglycosides **16–19**. The yields of purified products are shown in Figs. 1–3 (see also Tables 1S-4S in ESI).

Ethyl 4,6-*O*-benzylidene-1-thio-α-D-galactopyranoside (1)

To a suspension of ethyl 1-thio- α -D-galactopyranoside [1] (3.92 mmol, 880 mg) in dry MeCN (10 ml), PhCH(OMe)₂ (5.88 mmol, 0.86 ml) and CSA (0.58 mmol, 135 mg) were added. The reaction mixture was stirred at 20 °C for 3 h, then neutralized with Et₃N (0.1 mL) and concentrated under reduced pressure. The crystalline residue was thoroughly washed with light petroleum, then with EtOAc, and dried to give alcohol 1 (857 mg, 70%). The organic extract was washed with satd aq NaHCO₃, dried and concentrated under reduced pressure to give an additional portion of **1** (280 mg, 23%). Total yield of **1** 1.137 g (93%). $R_{\rm f} = 0.47$ (PhMe-Me₂CO, 2:1); [α]_D²¹ +191.5 (c 2.1 in CHCl₃); HRMS (ESI): *m/z* calcd for C₃₁H₃₈O₅SSi+Na⁺: 573.2101 [M+Na]⁺; found: 573.2096; ¹H NMR (300 MHz, MeOD): $\delta = 1.30$ (t, J = 7.4 Hz, 3H, C<u>H</u>₃CH₂S), 2.58 (dq, J = 7.5 Hz, J = 12.9 Hz, 1H, CH₃C<u>H</u>₂S), 2.64 (dq, J = 7.5 Hz, J = 7.5 12.9 Hz, 1H, CH₃CH₂S), 3.77 (dd, $J_{3,4} = 3.6$ Hz, $J_{3,2} = 10.2$ Hz, 1H, H-3), 4.07–4.10 (m, 1H, H-5), 4.08–4.14 (m, 1H, H-6a), 4.14–4.20 (m, 1H, H-6b), 4.20 (dd, $J_{2,1} = 5.4$ Hz, $J_{2,3} = 10.2$ Hz, 1H, H-2), 4.26 (dd, $J_{4,5} = 1.2$ Hz, $J_{4,3} = 3.6$ Hz, 1H, H-4), 5.48 (d, $J_{1,2} = 5.4$ Hz, 1H, H-1), 5.61 (s, 1H, PhCH), 7.27–7.42 (m, 3H, Ph (H-3, H-4, H-5)), 7.47–7.59 (m, 2H, Ph (H-2, H-6)); ¹³C NMR (75 MHz, MeOD): $\delta = 15.3$ (<u>CH</u>₃CH₂S), 25.2 (CH₃<u>C</u>H₂S), 64.7 (C-5), 69.5 (C-2), 70.4 (C-6), 71.0 (C-3), 77.9 (C-4), 87.8 (C-1), 102.3 (PhCH), 127.5 (Ph (C-2, C-6)), 129.0 (Ph (C-3, C-5)), 129.9 (Ph (C-4)), 139.7 (Ph (C-1)).

Ethyl 4,6-*O*-benzylidene-2,3-bis-*O*-triisopropylsilyl-1-thio-α-D-galactopyranoside (2)

To a solution of ethyl 4,6-O-benzylidene-1-thio- α -D-galactopyranoside (1) (0.10 g, 0.32 mmol) in 2,4,6-collidine (2.0 mL), *i*-Pr₃SiOTf (0.26 mL, 0.96 mmol) was added. The reaction mixture was stirred at 80 °C for 12 h and then diluted with CH₂Cl₂ (50 mL), washed with H₂O (50 mL), 1 M ag KHSO₄ (50 mL), H₂O (50 mL) and satd ag NaHCO₃ (50 mL). Each aqueous layer was extracted with CH₂Cl₂ (10 mL). The combined organic extracts were filtered through a cotton wool plug, concentrated under reduced pressure and purified by silica gel column chromatography (1 \rightarrow 4% EtOAc in light petroleum) to give benzylidene derivative 2 (190 mg, 95%). $R_f = 0.65$ (light petroleum– EtOAc, 8:2). $[\alpha]_D^{21}$ +143.6 (c 1.8 in CHCl₃); HRMS (ESI): m/z calcd for C₃₃H₆₀O₅SSi₂+Na⁺: 647.3592 [M+Na]⁺; found: 647.3588; ¹H NMR (600 MHz, CDCl₃): $\delta = 1.09 - 1.18$ (m, 42H, 2 × ((CH₃)₂CH)₃Si), 1.29 (t, J = 7.4 Hz, 3H, CH₃CH₂S), 2.52 (dq, J = 7.4 Hz, J = 12.9 Hz, 1H, CH₃CH₂S), 2.58 (dq, J = 7.4 Hz, J = 12.9 Hz, 1H, CH_3CH_2S , 4.07 (ddd~q, $J_{app.} = 1.5$ Hz, 1H, H-5), 4.10 (dd, $J_{6a,5} = 1.8$ Hz, $J_{6a,6b} = 12.4$ Hz, 1H, H-6a), 4.18 (dd, $J_{4,5} = 1.3$ Hz, $J_{4,3} = 3.3$ Hz, 1H, H-4), 4.22 (dd, $J_{6b,5} = 1.6$ Hz, $J_{6b,6a} = 12.4$ Hz, 2H, H-6b), 4.23 (dd, $J_{3,4} = 3.3$ Hz, $J_{3,2} = 9.6$ Hz, 1H, H-3), 4.65 (dd, $J_{2,1} = 5.0$ Hz, $J_{2,3} = 9.6$ Hz, 1H, H-2), 5.49 (d, *J*_{1,2} = 5.0 Hz, 1H, H-1), 5.54 (s, 1H, PhC<u>H</u>), 7.29–7.41 (m, 3H, Ph), 7.49–7.60 (m, 2H, Ph (H-2, H-6)); ¹³C NMR (151 MHz, CDCl₃): $\delta = 13.2$, 13.4 $(((CH_3)_2CH)_3Si), 14.7 (CH_3CH_2S), 18.0, 18.2 (((CH_3)_2CH)_3Si), 18.3 (2 \times ((CH_3)_2CH)_3Si), 18.3 ((CH_3)_2CH)_3Si), 18.3 ((CH_3)_2CH)_3Si), 18.3 ((CH_3)_$ 23.8 (CH₃CH₂S), 63.3 (C-5), 69.5 (C-6), 69.9 (C-2), 71.7 (C-3), 77.7 (C-4), 87.0 (C-1), 100.4 (PhCH), 126.0 (Ph (C-2, C-6)), 127.9 (Ph (C-3, C-5)), 128.5 (Ph (C-4)), 138.2 (Ph (C-1)).

Ethyl 4,6-*O*-benzylidene-2,3-bis-*O*-tert-butyldiphenylsilyl-1-thio-α-D-galactopyranoside (3)

To a solution of ethyl 4,6-*O*-benzylidene-1-thio- α -D-galactopyranoside **1** (0.838 g, 2.68 mmol) in dry DMF (5 mL), TBDPS-Cl (0.57 mL, 2.19 mmol) and imidazole (0.912 g, 13.4 mmol) were added. Then the reaction mixture was stirred at 20 °C for 3.5 h. Then an additional portion of TBDPS-Cl (0.1 mL, 0.38 mmol) was added and the reaction mixture was stirred at 20 °C for 18 h. The reaction mixture was quenched with satd aq NH₄Cl (100 mL) and diluted with *t*-BuOMe (100 mL). The organic layer was separated and the aqueous phase was extracted with *t*-BuOMe (4 × 10 mL). The combined organic layers were washed with water (100 mL) and brine (100 mL), dried and concentrated. After silica gel column chromatography (2 \rightarrow 12% EtOAc in light petroleum), a mixture of monosilyl ethers was obtained (1.28 g, 90% based on TBDPS-Cl).

To the solution of the obtained mixture (1.25 g, 2.27 mmol) in THF (12 mL), NaH (65% dispersion in mineral oil, 326 mg, 8.83 mmol) was added at 0 °C (bath temperature). After 20 min, TBDPS-Cl (1.18 mL, 4.54 mmol) was added. The reaction mixture was stirred at 20 °C for 24 h, cooled (ice-water), quenched with MeOH (0.5 mL) and concentrated under reduced pressure. The residue was diluted with t-BuOMe, washed twice with H₂O, concentrated and dried in *vacuo*. After purification by silica gel column chromatography $(2 \rightarrow 9\%)$ EtOAc in light petroleum), silyl ether **3** was obtained (1.62 g, 90% based on monosilylated intermediates). $R_{\rm f}$ = 0.35 (light petroleum–EtOAc 10:1); $[\alpha]_D^{25}$ +115.0 (c 2.0 in CHCl₃); HRMS (ESI): m/z calcd for C₄₇H₅₆O₅SSi₂+Na⁺: 811.3279 [M+Na]⁺; found: 811.3264; ¹H NMR (400 MHz, CDCl₃): δ $= 1.00 (t, J = 7.4 Hz, 3H, CH_3CH_2S), 1.14 (s, 9H, (CH_3)_3CSi)^1, 1.20 (s, 9H, (CH_3)_3CSi), 1.97-$ 2.15 (m, 2H, CH₃C<u>H</u>₂S), 3.11 (d, $J_{4,3} = 3.6$ Hz, 1H, H-4), 3.49 (dd, $J_{6a,5} = 1.8$ Hz, $J_{6a,6b} = 12.4$ Hz, 1H, H-6a), 3.59 (m~s, 1H, H-5), 3.85 (dd, *J*_{6b,5} = 1.5 Hz, *J*_{6b,6a} = 12.4 Hz, 1H, H-6b), 4.44 $(dd, J_{3,4} = 3.6 Hz, J_{3,2} = 9.6 Hz, 1H, H-3), 4.59 (d, J_{1,2} = 5.2 Hz, 1H, H-1), 4.79 (s, 1H, PhC<u>H</u>),$ 4.92 (dd, $J_{2,1} = 5.2$ Hz, $J_{2,3} = 9.6$ Hz, 1H, H-2), 7.27–7.52 (m, 17H, Ph), 7.82–7.86 (m, 2H, PhSi (H-2, H-6)), 7.88–7.92 (m, 2H, PhSi (H-2, H-6)), 7.93–7.97 (m, 2H, PhSi (H-2, H-6)), 7.97–8.01 (m, 2H, PhSi (H-2, H-6)); ¹³C NMR (101 MHz, CDCl₃): $\delta = 14.5$ (CH₃CH₂S), 19.1, 19.3 ((CH₃)₃CSi), 24.0 (CH₃CH₂S), 27.1, 27.4 ((CH₃)₃CSi), 62.6 (C-5), 69.2 (C-6), 70.4 (C-2), 72.5 (C-3), 75.2 (C-4), 86.3 (C-1), 99.9 (PhCH), 126.0 (PhCH (C-2, C-6)), 127.5, 127.6, 127.7, 127.8, 127.9, 128.5, 129.5, 129.7, 129.9 (Ph), 132.9, 134.8, 135.4 (PhSi (C-1)), 135.9, 136.1, 136.36, 136.44 (PhSi (C-2, C-6)), 138.0 (PhCH (C-1)).

Ethyl 2,3-bis-O-triisopropylsilyl-1-thio-α-D-galactopyranoside (4)

 $R_{\rm f} = 0.32$ (light petroleum–EtOAc 8:2); $[\alpha]_{\rm D}^{21} + 125.9$ (c 1.2 in CHCl₃); HRMS (ESI): m/z calcd for C₂₆H₅₆O₅SSi₂+Na⁺: 539.3279 [M+Na]⁺; found: 539.3274; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.02-1.22$ (m, 42H, 2 × ((CH₃)₂CH)₃Si), 1.28 (t, J = 7.4 Hz, 3H, C<u>H</u>₃CH₂S), 2.42 (br.s, 1H, HO-6), 2.50 (dq, J = 7.4 Hz, J = 12.7 Hz, 1H, CH₃C<u>H</u>₂S), 2.56 (dq, J = 7.4 Hz, J = 12.7 Hz, 1H, CH₃C<u>H</u>₂S), 2.71 (br.s, 1H, HO-4), 3.82 (dd, $J_{6a,5} = 4.0$ Hz, $J_{6a,6b} = 11.7$ Hz, 1H, H-6a), 3.97 (dd, $J_{4,5} = 1.9$ Hz, $J_{4,3} = 3.4$ Hz, 1H, H-4), 3.98 (dd, $J_{6b,5} = 5.8$ Hz, $J_{6b,6a} = 11.7$

¹ The ¹³C nuclei of the three CH groups in a triisopropylsilyloxy group next to a chiral center are chemically equivalent and appear as one peak, while those of the two CH_3 groups of each isopropyl moiety are diastereotopic and generally have close but distinct chemical shifts (two signals per one *O*-TIPS group). Such behavior is consistent over a large number of *O*-TIPS derivatives of sugars that we have dealt with.

Hz, 1H, H-6b), 4.13 (dd, $J_{3,4} = 3.4$ Hz, $J_{3,2} = 9.3$ Hz, 1H, H-3), 4.27 (ddd~t, J = 5.1 Hz, 1H, H-5), 4.38 (dd, $J_{2,1} = 5.1$ Hz, $J_{2,3} = 9.3$ Hz, 1H, H-2), 5.42 (d, $J_{1,2} = 5.1$ Hz, 1H, H-1); ¹³C NMR (75 MHz, CDCl₃): $\delta = 13.2$, 13.3 (((CH₃)₂CH)₃Si), 14.6 (CH₃CH₂S), 18.20 (((CH₃)₂CH)₃Si), 18.23 (2 × ((CH₃)₂CH)₃Si), 18.30 (((CH₃)₂CH)₃Si), 23.4 (CH₃CH₂S), 63.2 (C-6), 69.5 (C-5), 70.4 (C-2), 72.2 (C-4), 72.7 (C-3), 85.9 (C-1).

Ethyl 6-*O*-acetyl-2,3-bis-*O*-triisopropylsilyl-1-thio-α-D-galactopyranoside (5)

$$\begin{split} R_{\rm f} &= 0.56 \text{ (light petroleum-EtOAc 8:2); } [\alpha]_{\rm D}^{21} +136.3 \text{ (c } 1.5 \text{ in CHCl}_3\text{); } HRMS \\ (ESI):$$
m/z $calcd for C_{28}H_{58}O_6SSi_2+Na^+: 601.3385 [M+Na]^+; found: 601.3376; ¹H NMR (600 MHz, CDCl_3): <math>\delta = 1.02-1.25$ (m, 42H, 2 × ((CH_3)_2CH)_3Si), 1.29 (t, *J* = 7.4 Hz, 3H, C<u>H</u>_3CH_2S), 2.07 (s, 3H, CH_3CO), 2.46-2.54 (m, 2H, CH_3C<u>H</u>_{2a}S, HO-4), 2.57 (dq, *J* = 7.4 Hz, *J* = 12.8 Hz, 1H, CH_3C<u>H</u>_{2b}S), 3.88-3.91 (m, 1H, H-4), 4.12 (dd, *J*_{3,4} = 3.3 Hz, *J*_{3,2} = 9.2 Hz, 1H, H-3), 4.31 (dd, *J*_{6a,5} = 8.0 Hz, *J*_{6a,6b} = 11.5 Hz, 1H, H-6a), 4.37 (dd, *J*_{2,1} = 5.1 Hz, *J*_{2,3} = 9.2 Hz, 1H, H-2), 4.39 (dd, *J*_{6b,5} = 4.0 Hz, *J*_{6b,6a} = 11.5 Hz, 1H, H-6b), 4.40-4.44 (m, 1H, H-5), 5.39 (d, *J*_{1,2} = 5.1 Hz, 1H, H-1); ¹³C NMR (151 MHz, CDCl_3): $\delta = 13.2, 13.3$ (((CH₃)₂CH)₃Si), 14.7 (CH₃CH₂S), 18.18, 18.22, 18.23, 18.29 (((CH₃)₂CH)₃Si), 20.8 (CH₃CO), 23.5 (CH₃CH₂S), 63.7 (C-6), 68.2 (C-5), 70.5 (C-2), 70.7 (C-4), 72.8 (C-3), 85.8 (C-1), 170.7 (CO).

Ethyl 6-*O*-acetyl-2-*O*-triisopropylsilyl-1-thio-α-D-galactopyranoside (6)

 $R_{\rm f} = 0.09$ (light petroleum–EtOAc 8:2); $[\alpha]_{\rm D}^{23} +156.0$ (*c* 1.32 in CHCl₃); HRMS (ESI): m/z calcd for C₁₉H₃₈O₆SSi +Na⁺: 445.2051 [M+Na]⁺; found: 445.2043; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.01-1.19$ (m, 21H, ((CH₃)₂CH)₃Si), 1.29 (t, J = 7.4 Hz, 3H, CH₃CH₂S), 2.08 (s, 3H, CH₃CO), 2.44 (br.d, J = 3.7 Hz, 1H, HO-3), 2.43–2.66 (m, 2H, CH₃CH₂S), 2.56 (br.s, 1H, HO-4), 3.80 (m~dt, J = 2.8 Hz, J = 10.3 Hz, 1H, H-3), 4.01 (d, $J_{4,3} = 3.5$ Hz, 1H, H-4), 4.21–4.47 (m, 4H, H-6a, H-2, H-6b, H-5), 5.41 (d, $J_{1,2} = 5.4$ Hz, 1H, H-1); ¹³C NMR (75 MHz, CDCl₃): $\delta = 12.5$ (((CH₃)₂CH)₃Si), 14.7 (CH₃CH₂S), 17.97, 18.02 (((CH₃)₂CH)₃Si), 20.8 (CH₃CO), 23.5 (CH₃CH₂S), 63.4 (C-6), 68.0 (C-5), 69.1 (C-4), 70.3 (C-2), 71.5 (C-3), 85.4 (C-1), 170.8 (CO).

Ethyl 4-O-acetyl-2,3-bis-O-triisopropylsilyl-1-thio-α-D-galactopyranoside (7)

 $R_{\rm f} = 0.38$ (light petroleum–EtOAc 8:2); $[\alpha]_{\rm D}^{23}$ +131.0 (c 0.79 in CHCl₃); HRMS (ESI): m/z calcd for C₂₈H₅₈O₆SSi₂+Na⁺: 601.3385 [M+Na]⁺; found: 601.3381; ¹H NMR (300

MHz, CDCl₃): $\delta = 1.00 - 1.19$ (m, 42H, 2 × ((CH₃)₂CH)₃Si), 1.28 (t, J = 7.4 Hz, 3H, CH₃CH₂S), 2.15 (s, 3H, CH₃CO), 2.40–2.64 (m, 2H, CH₃CH₂S), 2.70 (br.s, 1H, HO-6), 3.44 (dd, $J_{6a,5} =$ 8.0 Hz, $J_{6a,6b} = 11.5$ Hz, 1H, H-6a), 3.52–3.68 (br.m, 1H, H-6b), 4.27 (dd, $J_{3,4} = 3.0$ Hz, $J_{3,2} =$ 9.4 Hz, 1H, H-3), 4.32-4.40 (m, 1H, H-5), 4.47 (dd, $J_{2,1} = 4.9$ Hz, $J_{2,3} = 9.4$ Hz, 1H, H-2), 5.22 $(dd, J_{4,5} = 1.2 Hz, J_{4,3} = 3.0 Hz, 1H, H-4), 5.37 (d, J_{1,2} = 4.9 Hz, 1H, H-1); {}^{13}C NMR (75 MHz, 1H, H-1); {}^{$ CDCl₃): $\delta = 13.25, 13.27$ (((CH₃)₂CH)₃Si), 14.7 (CH₃CH₂S), 18.17 (((CH₃)₂CH)₃Si), 18.26 (3) × ((CH₃)₂CH)₃Si), 20.9 (CH₃CO), 23.7 (CH₃CH₂S), 60.4 (C-6), 69.8 (C-5), 70.8, 70.9 (C-2, C-3), 73.1 (C-4), 86.1 (C-1), 172.4 (CO).

Ethyl 2,3-bis-*O-tert*-butyldiphenylsilyl-1-thio-α-D-galactopyranoside (8)

 $R_{\rm f} = 0.19$ (light petroleum-EtOAc 8:2); $[\alpha]_{\rm D}^{23} + 117.3$ (c 1.4 in CHCl₃); HRMS (ESI): *m/z* calcd for C₄₀H₅₂O₅SSi₂+Na⁺: 723.2966 [M+Na]⁺; found: 723.2974; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.00$ (t, J = 7.4 Hz, 3H, CH₃CH₂S), 1.20 (s, 9H, (CH₃)₃CSi), 1.21 (s, 9H, $(CH_3)_3CSi$, 1.93 (br.s, J = 6.3 Hz, 1H, HO-6), 2.01 (dq, J = 7.4 Hz, J = 12.6 Hz, 1H, CH₃CH₂S), 2.10 (dq, J = 7.4 Hz, J = 12.6 Hz, 1H, CH₃CH₂S), 2.35 (br.s, 1H, HO-4), 2.94 (dd, $J_{4,5} = 1.4$ Hz, $J_{4,3} = 3.2$ Hz, 1H, H-4), 3.34 (br.d, $J_{app.} = 11.1$ Hz, 1H, H-6a), 3.52 (dd, $J_{6b,5} = 1.4$ Hz, $J_{4,3} = 3.2$ Hz, 1H, H-4), 3.34 (br.d, $J_{app.} = 11.1$ Hz, 1H, H-6a), 3.52 (dd, $J_{6b,5} = 1.4$ Hz, $J_{4,5} = 1.$ 5.8 Hz, $J_{6b,6a} = 11.9$ Hz, 1H, H-6b), 3.77 (ddd, $J_{5,4} = 1.4$ Hz, $J_{5,6a} = 4.1$ Hz, $J_{5,6b} = 5.8$ Hz, 1H, H-5), 4.36 (dd, $J_{3,4} = 3.2$ Hz, $J_{3,2} = 9.5$ Hz, 1H, H-3), 4.44 (d, $J_{1,2} = 5.2$ Hz, 1H, H-1), 4.71 (dd, $J_{2,1} = 5.2$ Hz, $J_{2,3} = 9.5$ Hz, 1H, H-2), 7.33–7.54 (m, 12H, 4 × PhSi (H-3, H-4, H-5)), 7.77– 7.84 (m, 2H, PhSi (H-2, H-6)), 7.84–7.99 (m, 6H, $3 \times PhSi$ (H-2, H-6)); ¹³C NMR (75 MHz, $CDCl_3$): $\delta = 14.5$ (CH₃CH₂S), 19.16, 19.25 ((CH₃)₃CSi), 23.7 (CH₃CH₂S), 27.3, 27.5 ((CH₃)₃CSi), 63.0 (C-6), 69.1 (C-5), 70.6, 70.7 (C-2, C-4), 73.8 (C-3), 85.6 (C-1), 127.6, 127.7, 127.9, 128.2 (PhSi (C-3, C-5)), 129.7, 130.0, 130.1, 130.4 (PhSi (C-4)), 132.1, 133.0, 134.6, 134.7 (PhSi (C-1)), 135.5, 136.0, 136.1, 136.3 (PhSi (C-2, C-6)).

Ethyl 6-O-acetyl-2,3-bis-O-tert-butyldiphenylsilyl-1-thio-α-D-galactopyranoside (9)

 $R_{\rm f} = 0.42$ (light petroleum-EtOAc 8:2); $[\alpha]_{\rm D}^{22} + 120.5$ (c 1.6 in CHCl₃); HRMS (ESI): m/z calcd for C₄₂H₅₄O₆SSi₂+Na⁺: 765.3072 [M+Na]⁺; found: 765.3083; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.01$ (t, J = 7.4 Hz, 3H, CH₃CH₂S), 1.197 (s, 9H, (CH₃)₃CSi), 1.203 (s, 9H, (CH₃)₃CSi), 1.86 (s, 3H, CH₃CO), 2.06 (q, *J* = 7.4 Hz, 2H, CH₃CH₂S), 2.17 (br.d, *J* = 1.4 Hz, 1H, HO-4), 2.91 (br.s, 1H, H-4), 3.78–3.99 (m, 3H, H-6a, H-6b, H-5), 4.36 (dd, *J*_{3,4} = 3.2 Hz, $J_{3,2} = 9.5$ Hz, 1H, H-3), 4.40 (d, $J_{1,2} = 5.3$ Hz, 1H, H-1), 4.71 (dd, $J_{2,1} = 5.3$ Hz, $J_{2,3} = 9.5$ Hz, 1H, H-2), 7.32–7.55 (m, 12H, 4 × PhSi (H-3, H-4, H-5)), 7.78–7.85 (m, 2H, PhSi (H-2, H-6)), 7.85–7.98 (m, 6H, 3 × PhSi (H-2, H-6)); ¹³C NMR (75 MHz, CDCl₃): δ = 14.6 (<u>C</u>H₃CH₂S), 19.16, 19.24 ((CH₃)₃<u>C</u>Si), 20.7 (<u>C</u>H₃CO), 23.8 (CH₃<u>C</u>H₂S), 27.3, 27.5 ((<u>C</u>H₃)₃CSi), 62.9 (C-6), 67.3 (C-5), 68.8 (C-4), 70.7 (C-2), 73.8 (C-3), 85.7 (C-1), 127.6, 127.7, 127.9, 128.2 (PhSi (C-3, C-5)), 129.7, 129.9, 130.1, 130.3 (PhSi (C-4)), 132.1, 132.9, 134.6, 134.8 (PhSi (C-1)), 135.5, 136.0, 136.1, 136.3 (PhSi (C-2, C-6)), 170.3 (CO).

Ethyl 4-O-acetyl-2,3-bis-O-tert-butyldiphenylsilyl-1-thio-α-D-galactopyranoside (10)

 $R_{\rm f} = 0.28$ (light petroleum–EtOAc 8:2); $[\alpha]_{\rm D}^{23}$ +110.5 (c 1.6 in CHCl₃); HRMS (ESI): m/z calcd for C₄₂H₅₄O₆SSi₂+K⁺: 781.2811 [M+K]⁺; found: 781.2835; ¹H NMR (300 MHz, CDCl₃): $\delta = 1.01$ (t, J = 7.4 Hz, 4H, C<u>H</u>₃CH₂S), 1.18 (s, 9H, (CH₃)₃CSi), 1.19 (s, 9H, (CH₃)₃CSi), 2.06 (s, 3H, CH₃CO), 1.98–2.17 (m, 2H, CH₃C<u>H₂S</u>), 2.33 (br.s, 1H, HO-6), 2.87–3.04 (br.m, 1H, H-6a), 3.06–3.24 (br.m, 1H, H-6b), 3.82 (ddd~dd, J = 6.0 Hz, J = 8.4 Hz, 1H, H-5), 4.22 (br.s, 1H, H-4), 4.37 (d, $J_{1,2} = 5.0$ Hz, 1H, H-1), 4.45 (dd, $J_{3,4} = 2.9$ Hz, $J_{3,2} = 9.8$ Hz, 1H, H-3), 4.76 (dd, $J_{2,1} = 5.0$ Hz, $J_{2,3} = 9.8$ Hz, 1H, H-2), 7.33–7.53 (m, 12H, 4 × PhSi (H-3, H-4, H-5)), 7.67–7.74 (m, 2H, PhSi (H-2, H-6)), 7.83–7.95 (m, 4H, 2 × PhSi (H-2, H-6)), 7.95–8.04 (m, 2H, PhSi (H-2, H-6)); ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.5$ (CH₃CH₂S), 19.1, 19.2 ((CH₃)₃CSi), 20.8 (CH₃CO), 23.9 (CH₃CH₂S), 27.2, 27.4 ((CH₃)₃CSi), 59.8 (C-6), 69.0 (C-5), 71.0 (C-2), 71.7 (C-3), 72.1 (C-4), 86.0 (C-1), 127.6, 127.7, 127.8, 128.0 (PhSi (C-3, C-5)), 129.7, 129.9, 130.1, 130.2 (PhSi (C-4)), 132.8, 132.9, 134.0, 134.6 (PhSi (C-1)), 135.9, 136.0, 136.27, 136.33 (PhSi (C-2, C-6)), 171.9 (CO).

Ethyl 4-*O*-acetyl-2,3-di-*O*-benzyl-1-thio-β-D-galactopyranoside (13)

*R*_f = 0.33 (light petroleum–EtOAc 1:1); $[\alpha]_D^{23}$ +7.9 (*c* 1.1 in CHCl₃); HRMS (ESI): *m/z* calcd for C₂₄H₃₀O₆S+Na⁺: 469.1655 [M+Na]⁺; found: 469.1651; ¹H NMR (300 MHz, CDCl₃): δ = 1.33 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃CH₂S), 2.20 (s, 3H, CH₃CO), 2.41 (br.s, 1H, HO-6), 2.75 (dq, *J* = 7.3 Hz, *J* = 12.5 Hz, 1H, CH₃C<u>H</u>₂S), 2.80 (dq, *J* = 7.5 Hz, *J* = 12.7 Hz, 1H, CH₃C<u>H</u>₂S), 3.50 (dd, *J*_{6a,5} = 6.4 Hz, *J*_{6a,6b} = 11.1 Hz, 1H, H-6a), 3.62 (td, *J*_{5,4} = 0.9 Hz, *J*_{5,6a} = *J*_{5,6b} = 6.4 Hz, 1H, H-5), 3.64–3.70 (m, 2H, H-3, H-2), 3.72 (dd, *J*_{6b,5} = 6.4 Hz, *J*_{6b,6a} = 11.1 Hz, 1H, H-6b), 4.47– 4.53 (m, 1H, H-1), 4.58 (d, *J* = 11.4 Hz, 1H, PhC<u>H</u>₂), 4.71 (d, *J* = 11.4 Hz, 1H, PhC<u>H</u>₂), 4.79 (d, *J* = 10.1 Hz, 1H, PhC<u>H</u>₂), 4.86 (d, *J* = 10.1 Hz, 1H, PhC<u>H</u>₂), 5.47 (dd~d, *J* = 2.2 Hz, 1H, H-4), 7.28–7.44 (m, 10H, 2 × Ph); ¹³C NMR (75 MHz, CDCl₃): δ = 15.1 (CH₃CH₂S), 20.9 (<u>C</u>H₃CO), 25.1 (CH₃<u>C</u>H₂S), 60.9 (C-6), 67.4 (C-4), 71.9, 75.9 (Ph<u>C</u>H₂), 77.1 (C-5), 78.0, 80.7 (C-2, C-3), 85.6 (C-1), 127.80, 127.88, 127.92, 128.28, 128.31, 128.45 (Ph), 137.5, 138.1 (Ph (C-1)), 171.8 (CO).

Ethyl 6-*O*-acetyl-2,3-di-*O*-benzyl-1-thio-β-D-galactopyranoside (14)

*R*_f = 0.52 (light petroleum–EtOAc 1:1); $[α]_D^{22}$ +2.0 (*c* 2.6 in CHCl₃); HRMS (ESI): *m/z* calcd for C₂₄H₃₀O₆S +Na⁺: 469.1655 [M+Na]⁺; found: 469.1649; ¹H NMR (300 MHz, CDCl₃): δ = 1.33 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃CH₂S), 2.08 (s, 3H, CH₃CO), 2.48 (br.s, 1H, HO-4), 2.65–2.88 (m, 2H, CH₃C<u>H</u>₂S), 3.56 (dd, *J*_{3,4} = 3.5 Hz, *J*_{3,2} = 9.0 Hz, 1H, H-3), 3.59–3.65 (m, 1H, H-5), 3.67 (dd, *J*_{2,3} = 9.0 Hz, *J*_{2,1} = 9.6 Hz, 1H, H-2), 3.99 (dd~d, *J* = 2.7 Hz, 1H, H-4), 4.27–4.38 (m, 2H, H-6a, H-6b), 4.43 (d, *J*_{1,2} = 9.6 Hz, 1H, H-1), 4.73 (s, 2H, 3-*O*-PhC<u>H</u>₂), 4.77 (d, *J* = 10.4 Hz, 1H, 2-*O*-PhC<u>H</u>₂), 4.89 (d, *J* = 10.4 Hz, 1H, 2-*O*-PhC<u>H</u>₂), 7.20–7.50 (m, 10H, 2 × Ph); ¹³C NMR (75 MHz, CDCl₃): δ = 15.1 (<u>C</u>H₃CH₂S), 20.8 (<u>C</u>H₃CO), 24.9 (CH₃<u>C</u>H₂S), 63.3 (C-6), 66.7 (C-4), 72.3 (3-*O*-Ph<u>C</u>H₂), 75.5 (C-5), 75.8 (2-*O*-Ph<u>C</u>H₂), 77.7 (C-2), 82.1 (C-3), 85.1 (C-1), 127.80, 127.83, 128.0, 128.30, 128.32, 128.5 (Ph), 137.6 (3-*O*-<u>Ph</u>CH₂ (C-1)), 138.0 (2-*O*-<u>Ph</u>CH₂ (C-1)), 170.8 (CO).

Phenyl 6-*O*-acetyl-2,3-di-*O*-benzyl-1-thio-β-D-glucopyranoside (17) [2]

¹H NMR spectrum was identical to that described [2].

 $R_{\rm f} = 0.70$ (light petroleum–EtOAc 4:6); HRMS (ESI): m/z calcd for C₂₈H₃₀O₆S+Na⁺: 517.1655 [M+Na]⁺; found: 517.1653.

Phenyl 4-*O*-acetyl-2,3-di-*O*-benzyl-1-thio-β-D-glucopyranoside (18)

*R*_f = 0.50 (light petroleum–EtOAc 4:6); $[\alpha]_D^{22}$ –20.5 (*c* 1.2 in CHCl₃); HRMS (ESI): m/z calcd for C₂₈H₃₀O₆S+Na⁺: 517.1655 [M+Na]⁺; found: 517.1657; ¹H NMR (300 MHz, Me₂CO-d₆): δ = 1.99 (s, 3H, CH₃CO), 3.49 (dd, *J*_{2,3} = 8.7 Hz, *J*_{2,1} = 9.8 Hz, 1H, H-2), 3.51–3.68 (m, 3H, H-6a, H-6b, H-5), 3.83 (dd, *J*_{3,2} = 8.7 Hz, *J*_{3,4} = 9.4 Hz, 1H, H-3), 4.70 (d, *J* = 11.4 Hz, 1H, 3-*O*-PhC<u>H</u>_{2a}), 4.76 (d, *J* = 10.6 Hz, 1H, 2-*O*-PhC<u>H</u>_{2a}), 4.82 (d, *J* = 11.4 Hz, 1H, 3-*O*-PhC<u>H</u>_{2b}), 4.87 (d, *J*_{1,2} = 9.8 Hz, 2H, H-1), 4.88 (d, *J* = 10.6 Hz, 2H, 2-*O*-PhC<u>H</u>_{2b}), 4.94 (dd~t, *J*_{app.} = 9.5 Hz, 1H, H-4), 7.19–7.48 (m, 13H, Ph), 7.52–7.66 (m, 2H, PhS (H-2, H-6)); ¹³C NMR (75 MHz, Me₂CO-d₆): δ = 21.0 (<u>C</u>H₃CO), 62.2 (C-6), 71.4 (C-4), 75.7, 75.8 (Ph<u>C</u>H₂), 79.7 (C-5), 81.7 (C-2), 84.8 (C-3), 87.7 (C-1), 128.0, 128.3, 128.4, 128.5, 128.9, 129.0, 129.1, 129.8 (Ph), 131.9 (PhS (C-2, C-6)), 135.3 (PhS (C-1)), 139.4, 139.7 (<u>Ph</u>CH₂ (C-1)), 170.4 (CO).

General procedure for acetylation of thioglycoside 20

To thioglycoside **20** (150 mg, 0.55 mmol) 60–100% (v/v) AcOH (27.5 mL) was added and the reaction mixture (c = 20 mmol/L) was stirred at $T \,^{\circ}\text{C}$ according to methods C-I (Table 1). Then the reaction mixture was concentrated under reduced pressure and dried *in vacuo*. The products were purified by silica gel column chromatography in gradient of EtOAc in light petroleum (5 \rightarrow 60%) to afford acetylated products **21–28**. The yields of purified products are shown in Figs. 4, 5 (see also Table 5S in ESI).

Phenyl 6-O-acetyl-1-thio-β-D-glucopyranoside (21)

*R*_f = 0.30 (light petroleum–EtOAc 1:9); $[α]_D^{23}$ –61.7 (*c* 2.0 in CHCl₃); HRMS (ESI): m/z calcd for C₁₄H₁₈O₆S+Na⁺: 337.0716 [M+Na]⁺; found: 337.0715; ¹H NMR (300 MHz, MeOD): δ = 2.04 (s, 3H, CH₃CO), 3.22 (dd, *J*_{2,3} = 8.5 Hz, *J*_{2,1} = 9.7 Hz, 1H, H-2), 3.24–3.33 (m, 1H, H-4), 3.40 (dd~t, *J*_{app.} = 8.8 Hz, 1H, H-3), 3.50 (ddd, *J*_{5,6b} = 2.2 Hz, *J*_{5,6a} = 6.6 Hz, *J*_{5,4} = 9.8 Hz, 1H, H-5), 4.19 (dd, *J*_{6a,5} = 6.6 Hz, *J*_{6a,6b} = 11.9 Hz, 1H, H-6a), 4.40 (dd, *J*_{6b,5} = 2.2 Hz, *J*_{6b,6a} = 11.9 Hz, 1H, H-6b), 4.59 (d, *J*_{1,2} = 9.7 Hz, 1H, H-1), 7.19–7.38 (m, 3H, PhS (H-3, H-4, H-5)), 7.45– 7.61 (m, 2H, PhS (H-2, H-6)); ¹³C NMR (75 MHz, MeOD): δ = 20.8 (CH₃CO), 64.9 (C-6), 71.4 (C-4), 73.7 (C-2), 79.0 (C-5), 79.4 (C-3), 89.0 (C-1), 128.5 (PhS (C-4)), 129.8 (PhS (C-3, C-5)), 133.0 (PhS (C-2, C-6)), 134.8 (PhS (C-1)), 172.7 (CO).

Phenyl 3,6-di-*O*-acetyl-1-thio-β-D-glucopyranoside (22)

*R*_f = 0.70 (light petroleum–EtOAc 1:9); $[α]_D^{23}$ –46.9 (c 1.0 in CHCl₃); HRMS (ESI): *m/z* calcd for C₁₆H₂₀O₇S+Na⁺: 379.0822 [M+Na]⁺; found: 379.0815; ¹H NMR (300 MHz, MeOD): δ = 2.05 (s, 3H, CH₃CO), 2.10 (s, 3H, CH₃CO), 3.27–3.36 (m, 1H, H-2), 3.41 (dd~t, *J*_{app.} = 9.6 Hz, 1H, H-4), 3.59 (ddd, *J*_{5,6b} = 2.2 Hz, *J*_{5,6a} = 6.2 Hz, *J*_{5,4} = 10.0 Hz, 1H, H-5), 4.21 (dd, *J*_{6a,5} = 6.2 Hz, *J*_{6a,6b} = 11.9 Hz, 1H, H-6a), 4.40 (dd, *J* = 2.2 Hz, *J* = 11.9 Hz, 1H, H-6b), 4.66 (d, *J* = 9.8 Hz, 1H, H-1), 4.96 (t, *J* = 9.2 Hz, 1H, H-3), 7.24–7.39 (m, 3H, PhS (H-3, H-4, H-5)), 7.50–7.61 (m, 2H, PhS (H-2, H-6)); ¹³C NMR (75 MHz, MeOD): δ = 20.8 (CH₃CO), 21.1 (CH₃CO), 64.6 (C-6), 69.8 (C-4), 71.9 (C-2), 78.9 (C-5), 80.2 (C-3), 88.7 (C-1), 128.8 (PhS (C-4)), 129.9 (PhS (C-3, C-5)), 133.5 (PhS (C-2, C-6)), 134.2 (PhS (C-1)), 172.60, 172.65 (CO).

Phenyl 4,6-di-*O*-acetyl-1-thio-β-D-glucopyranoside (23)

*R*_f = 0.50 (light petroleum–EtOAc 1:9); $[\alpha]_D^{22}$ –28.7 (c 1.36 in CHCl₃); HRMS (ESI): *m*/*z* calcd for C₁₆H₂₀O₇S+Na⁺: 379.0822 [M+Na]⁺; found: 379.0813; ¹H NMR (300 MHz, CDCl₃): δ = 2.09 (s, 3H, CH₃CO), 2.12 (s, 3H, CH₃CO), 2.68–3.02 (br.m, 2H, 2 × HO), 3.41 (dd, *J*_{2,3} = 8.8 Hz, *J*_{2,1} = 9.7 Hz, 1H, H-2), 3.67 (ddd, *J*_{5,6a} = 2.8 Hz, *J*_{5,6b} = 5.1 Hz, *J*_{5,4} = 10.0 Hz, 1H, H-5), 3.69 (dd, *J*_{3,2} = 8.8 Hz, *J*_{3,4} = 9.5 Hz, 1H, H-3), 4.18 (dd, *J*_{6a,5} = 2.8 Hz, *J*_{6a,6b} = 12.2 Hz, 1H, H-6a), 4.24 (dd, *J*_{6b,5} = 5.1 Hz, *J*_{6b,6a} = 12.2 Hz, 1H, H-6b), 4.53 (d, *J*_{1,2} = 9.7 Hz, 1H, H-1), 4.87 (dd~t, *J*_{app.} = 9.7 Hz, 1H, H-4), 7.28–7.40 (m, 3H, PhS (H-3, H-4, H-5)), 7.51–7.62 (m, 2H, PhS (H-2, H-6)); ¹³C NMR (75 MHz, CDCl₃): δ = 20.8, 20.9 (<u>C</u>H₃CO), 62.5 (C-6), 70.2 (C-4), 72.3 (C-2), 75.8 (C-5), 76.1 (C-3), 87.6 (C-1), 128.4 (PhS (C-4)), 129.0 (PhS (C-3, C-5)), 131.2 (PhS (C-1)), 133.1 (PhS (C-2, C-6)), 170.6, 170.7 (CO).

Phenyl 3,4,6-tri-*O*-acetyl-1-thio-β-D-glucopyranoside (24)

*R*_f = 0.80 (light petroleum–EtOAc 1:9); $[\alpha]_D^{22}$ -20.5 (c 1.97 in CHCl₃); HRMS (ESI): *m/z* calcd for C₁₈H₂₂O₈S+Na⁺: 421.0928 [M+Na]⁺; found: 421.0929; ¹H NMR (300 MHz, CDCl₃): δ = 2.03 (s, 3H, 4-*O*-CH₃CO), 2.07 (s, 3H, CH₃CO), 2.09 (s, 3H, CH₃CO), 2.56 (br.s, 1H, HO-2), 3.51 (ddd~td, *J*_{2,HO} = 1.7 Hz, *J*_{app.} = 9.6 Hz, 1H, H-2), 3.73 (ddd, *J*_{5,6a} = 2.7 Hz, *J*_{5,6b} = 4.9 Hz, *J*_{5,4} = 10.0 Hz, 1H, H-5), 4.18 (dd, *J*_{6a,5} = 2.7 Hz, *J*_{6a,6b} = 12.3 Hz, 1H, H-6a), 4.24 (dd, *J*_{6b,5} = 4.9 Hz, *J*_{6b,6a} = 12.3 Hz, 1H, H-6b), 4.57 (d, *J*_{1,2} = 9.8 Hz, 1H, H-1), 4.98 (dd~t, *J*_{app.} = 9.7 Hz, 1H, H-4), 5.13 (dd~t, *J*_{app.} = 9.3 Hz, 1H, H-3), 7.29–7.41 (m, 3H, PhS (H-3, H-4, H-5)), 7.52–7.62 (m, 2H, PhS (H-2, H-6)); ¹³C NMR (75 MHz, CDCl₃): δ = 20.6 (4-*O*-<u>CH</u>₃CO), 20.7, 20.8 (3-*O*-<u>C</u>H₃CO, 6-*O*-<u>C</u>H₃CO), 62.2 (C-6), 68.1 (C-4), 70.3 (C-2), 75.8 (C-3), 75.9 (C-5), 88.0 (C-1), 128.7 (PhS (C-4)), 129.1 (PhS (C-3, C-5)), 130.6 (PhS (C-1)), 133.5 (PhS (C-2, C-6)), 169.6 (4-*O*-CH₃<u>C</u>O), 170.6, 170.7 (3-*O*-CH₃<u>C</u>O).

Table 1S The yields (%) of products 4-7 obtained from compounds 2, 4 under acetylation conditions according to method **B**. See also Fig. 1.

Entry	Method	c, mmol/L	Substrate	4 (%)	5 (%)	6 (%)	7 (%)
1	В	48	2	19	22	7	3
2	В	48	4	22	32	9	6

Table 2S The yields (%) of products **3**, **8–10** obtained from compound **3** under acetylation conditions according to method B. See also Fig. 1.

Entry	Method	c, mmol/L	Substrate	3 (%)	8 (%)	9 (%)	10 (%)
1	В	10	3	0	34	31	5
2	В	48	3	0	39	35	0
3	В	100	3	2	45	36	4

Table 3S The yields (%) of products 11-14 obtained from compound 11 under acetylation conditions according to method *B*. See also Fig. 2.

Entry	Method	c, mmol/L	Substrate	11 (%)	12 (%)	13 (%)	14 (%)
1	В	58	11	5	36	11	41
2	В	68	11	0	30	8	43

Table 4S The yields (%) of products **16–19** obtained from compounds **15–17** under acetylation conditions according to methods *A–C*. See also Fig. 3.

Entry	Method	c, mmol/L	Substrate	16 (%)	17 (%)	18 (%)	19 (%)
1	A	20	15	54	27	1	0
2	В	20	15	43	45	6	0
3	A	20	16	51	28	2	0
4	В	20	16	43	30	8	0
5	С	20	16	35	42	4	3
6	В	20	17	24	53	4	0

Table 5S The yields (%) of compounds **20–28** after acetylation of compound **20** according to methods *C–I*. Concentration of **20** c = 20 mmol/L. See also Figs. 4 and 5.

	Method							
Cmpd	С	D	E	F	G	H	Ι	
20	34	5	0	20	35	50	19	
21	47	34	0	49	36	33	42	
22	5	0	0	7	5	2	7	
23	0	0	0	0	5	0	3	
24	0	0	0	2	0	0	0	
25	0	0	17	0	0	0	0	
26	5	5	14	8	8	7	10	
27	5	21	40	8	0	2	5	
28	0	10	29	0	0	0	2	

References

- 1. L. Käsbeck and H. Kessler, Liebigs Ann./Recl., 1997, 169–173.
- 2. M. M. Mukherjee, N. Basu, S. Nandi, and R. Ghosh, Carbohydr. Res., 2019, 476, 36-43.

¹H NMR (300 MHz) spectrum of compound 1 in CD₃OD

¹³C NMR (75 MHz) spectrum of compound 1 in CD₃OD

S20

S21

DEPT spectrum of compound 1 in CD₃OD (75 MHz)

¹H NMR (600 MHz) spectrum of compound 2 in CDCl₃

¹³C NMR (151 MHz) spectrum of compound 2 in CDCl₃

Ph (\cdot) \cap TIPSO TIPS SEt KBR210_ap07195b 1H,13C-HSQC - 10 - 20 - 30 - 40 - 50 - 60 - 70 - 80 . - 90 - 100 I. - 110 - 120 - 130 - 140 - 150 - 160 • • - 170 - 180 1.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

HSQC spectrum of compound 2 in CDCl₃ (600 MHz)

¹H NMR (400 MHz) spectrum of compound 3 in CDCl₃

¹³C NMR (101 MHz) spectrum of compound 3 in CDCl₃

COSY spectrum of compound 3 in CDCl₃ (400 MHz)

HSQC spectrum of compound 3 in CDCl₃ (400 MHz)

S32

¹H NMR (300 MHz) spectrum of compound 4 in CDCl₃

¹³C NMR (75 MHz) spectrum of compound 4 in CDCl₃

¹H NMR (300 MHz) spectrum of compound 5 in CDCl₃

¹³C NMR (151 MHz) spectrum of compound 5 in CDCl₃

¹H NMR (300 MHz) spectrum of compound 6 in CDCl₃

¹³C NMR (75 MHz) spectrum of compound 6 in CDCl₃

HO ,OAc HO TIPS SEt ⊢1.0 - 1.5 - 2.0 ð Ð - 2.5 þ - 3.0 - 3.5 - 4.0 0 11 1 - 4.5 - 5.0 00 6116 - 5.5 5.6 5.4 5.2 5.0 4.8 4.6 4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2

COSY spectrum of compound 6 in CDCl₃ (300 MHz)

HSQC spectrum of compound 6 in CDCl₃ (300 MHz)

DEPT spectrum of compound 6 in CDCl₃ (75 MHz)

¹³C NMR (75 MHz) spectrum of compound 7 in CDCl₃

COSY spectrum of compound 7 in CDCl₃ (300 MHz)

¹H NMR (300 MHz) spectrum of compound 8 in CDCl₃

¹³C NMR (151 MHz) spectrum of compound 8 in CDCl₃

136.33 136.13 135.47 135.46.00 133.46.01 133.60 133.46.01 132.96 133.37 123.96 123.96 123.96 123.96 123.96 123.96 123.76 125.76 125.76 125.76 125.76 125.76 125.76 125.76 125.76 125.76 125.76 125.76	85.60	77.42 77.00 73.79 70.69 69.05 63.01	27.50 27.29 23.71 19.25 19.16
		SVIV-I	\vee / \vee /

HSQC spectrum of compound 8 in CDCl₃ (600 MHz)

DEPT spectrum of compound 8 in CDCl₃ (75 MHz)

¹H NMR (300 MHz) spectrum of compound 9 in CDCl₃

¹³C NMR (75 MHz) spectrum of compound 9 in CDCl₃

27.49 27.27 23.80 20.65 19.24 19.16 14.56

YINYI

HMBC spectrum of compound 9 in CDCl₃ (300 MHz)

DEPT spectrum of compound 9 in CDCl₃ (75 MHz)

¹H NMR (300 MHz) spectrum of compound 10 in CDCl₃

¹³C NMR (75 MHz) spectrum of compound 10 in CDCl₃

¹H NMR (300 MHz) spectrum of compound 13 in CDCl₃

¹H NMR (300 MHz) spectrum of compound 14 in CDCl₃

¹³C NMR (75 MHz) spectrum of compound 14 in CDCl₃

COSY spectrum of compound 14 in CDCl₃ (300 MHz)

HSQC spectrum of compound 14 in CDCl₃ (300 MHz)

DEPT spectrum of compound 14 in CDCl₃ (75 MHz)

128.53 128.32 128.30 128.02 127.80 127.80	85.08 82.09 75.79 75.51 72.33 66.70 63.27	24.87	20.83	15.07

¹H NMR (300 MHz) spectrum of compound 18 in Me₂CO-d₆ ОН AcO-BnO-SPh BnÒ ተ ΗH $\gamma \eta \gamma \eta \gamma \eta$ Ч ٦٩٩٩٩ 12.80-0.12 2.09 3.40 0.97 2.09 1.03 1.13 1.01 1.03 0.31 3.07 1.03 2.88

۱.0

-C

¹³C NMR (75 MHz) spectrum of compound 18 in Me₂CO-d₆

COSY spectrum of compound 18 in Me₂CO-d₆ (300 MHz)

HSQC spectrum of compound 18 in Me₂CO-d₆ (300 MHz)

DEPT spectrum of compound 18 in Me₂CO-d₆ (75 MHz)

¹H NMR (300 MHz) spectrum of compound 21 in CD₃OD

¹³C NMR (75 MHz) spectrum of compound 21 in CD₃OD

COSY spectrum of compound 21 in CD₃OD (300 MHz)

HMBC spectrum of compound 21 in CD₃OD (300 MHz)

DEPT spectrum of compound 21 in CD₃OD (75 MHz)

¹H NMR (300 MHz) spectrum of compound 22 in CD₃OD

¹³C NMR (75 MHz) spectrum of compound 22 in CD₃OD

DEPT spectrum of compound 22 in CD₃OD (75 MHz)

¹H NMR (300 MHz) spectrum of compound 23 in CDCl₃

¹³C NMR (75 MHz) spectrum of compound 23 in CDCl₃

COSY spectrum of compound 23 in CDCl₃ (300 MHz)

HSQC spectrum of compound 23 in CDCl₃ (300 MHz)

QAc Ο AcO-HO ,SPh HÒ |- 20 - 30 . Ч. - 40 ¥, - 50 $\mathcal{L}_{\mathcal{A}}$ - 60 ł, 1 - 70 44. 77 ÷ $_{\rm sh}$ a. - 80 11 . - 90 •• - 100 - 110 12 . 64 - 120 - 130 ÷ $\mathbf{r}_{\mathbf{a}}$ - 140 . 4 - 150 d, I. - 160 - 170 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

HMBC spectrum of compound 23 in CDCl₃ (300 MHz)

DEPT spectrum of compound 23 in CDCl₃ (75 MHz)

DEPT spectrum of compound 24 in CDCl₃ (75 MHz)

