Electronic supplementary information

Mechanism of phosphate removal from aqueous solutions by biochar supported nanoscale zero-valent iron

Fengfeng Ma*, Baowei Zhao, Jingru Diao, Yufeng Jiang, Jian Zhang

(School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou

730070, China)

*Corresponding author. E-mail: mayibo1985@126.com

TEXT S1

Adsorption models

Models	Expression
pseudo-first-order	$\frac{\mathrm{d}q_{\mathrm{t}}}{\mathrm{d}t} = k_{\mathrm{l}}(q_{\mathrm{e}} - q_{\mathrm{t}})$
pseudo-second-order	$\frac{\mathrm{d}q_{\mathrm{t}}}{\mathrm{d}t} = k_2 (q_{\mathrm{e}} - q_{\mathrm{t}})^2$
Elovich	$\frac{\mathrm{d}q_{\mathrm{t}}}{\mathrm{d}t} = \alpha \exp(-\beta q_{\mathrm{t}})$
Intra-particle diffusion	$q_{\rm t} = k_{\rm d} t^{1/2} + C_{\rm i}$
Langmuir	$q_{\rm e} = \frac{q_{\rm m} K_{\rm L} c_{\rm e}}{1 + K_{\rm L} c_{\rm e}}$
Freundlich	$q_{\rm e} = K_{\rm F} c_{\rm e}^{1/{\rm n}}$
Sips	$q_{\rm e} = \frac{q_{\rm m} K_{\rm s} c_{\rm e}^{\frac{1}{n}}}{1 + K_{\rm s} c_{\rm e}^{\frac{1}{n}}}$
Temkin	$q_{\rm e} = A \ln K_{\rm t} c_{\rm e}$

 Table 1.
 List of adsorption kinetic and isotherm models used in this study

where q_t and q_e (mg/g) are the amounts of phosphate adsorbed at time *t* (h) and equilibrium, respectively; k_1 (h⁻¹), k_2 (g/mg/h), and k_d (mg/g/h^{-1/2}) are the pseudo-first-order, pseudo-second-order, and intra-particle diffusion rate constants, respectively; α (mg/g/h) is the initial adsorption rate, β (g/mg) is the desorption constant, and C_i is a constant related to the boundary layer thickness; K_L (L/mg), K_F (L/mg), K_S , and K_t are the Langmuir, Freundlich, Sips, and Temkin constants, respectively.

Fig. S1 Adsorption and desorption cycles performance of RSBC and nZVI-RSBC for phosphate uptake