Supporting Information

Cell-tailored calcium carbonate particles with different

crystal forms from nanoparticle to nano/microsphere

Yi Chang,^a Huijuan Han,^b Tingting Liu,^a Shibao Yuan^b, Shuting Chen^a, Yuming Guo*^b, Lin Yang^a and Xiaoming Ma*^a

Table of Contents

Figure S1. The light micrographs of yeast cells before and after proliferation2
Figure S2. The zeta potentials of the YC-CaCO ₃ NPs······2
Figure S3. The SEM and XRD of the CaCO ₃ synthesized in the distilled water
Figure S4. Absorbance of different concentration of free DOX at 480 nm·······3
Figure S5. The anti-proliferation effects of the YC-CaCO3 NSs on V79-4 normal cells and HeLa
cells ······3

Figure S1 The light micrographs of yeast cells before and after proliferation.

Figure S2 The zeta potentials of the YC-CaCO₃ NPs with different sizes (from a to d corresponds

to the size of 2.3 nm, 3.9 nm, 6.2 nm and 12.2 nm of YC-CaCO₃ NPs, respectively)

Figure S3 The SEM and XRD of the CaCO₃ synthesized in the distilled water.

Figure S4 Absorbance at 480 nm vs. free DOX concentration (optical path = 1 cm). Solid line is the liner fit using the analysis tool in Origin software and the $R^2 = 0.9999$.

Figure S5 The anti-proliferation effects of the YC-CaCO₃ NSs on V79-4 normal cells (a) and HeLa cells (b), respectively. Each bar represents the mean \pm S.D. NA: not available.