Electronic supporting information for

"NMR-based quantitative studies of the conformational equilibrium between their

square and folded forms of ascidiacyclamide and its analogues"

Akiko Asano*, Katsuhiko Minoura, Yuki Kojima, Taishi Yoshii, Ryoya Ito, Takeshi Yamada, Takuma Kato

and Mitsunobu Doi

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.

Contents:

Synthesis and characterization of the peptides 8-12Page 2-6
¹ H NMR spectra for peptides 8-12Page 7-21
HPLC analyses for peptides 8-12Page 22
Crystallographic data for peptides 10-12 Page 23
VT-NMR data for peptides 1-12, T3ASC and dASCPage 24-
37
Thermodynamic parameters and van't Hoff plots for peptides 1-12 Page 38-48
CD spectral changes by TFE titration for peptides 2-7Page 49
CD spectral changes by increasing temperature for peptides 2-7Page 50
Superimposition of the X-ray structures of peptide 1 and T3ASCPage 51
The X-ray structure of dASCPage 52

Synthesis and characterization of the peptides 8-12

General Experimental Methods

Pure products were obtained after liquid chromatography using Merck silica gel 60 (40-63 μ m). Analytical thin-layer chromatography was carried out on Merck silica gel F₂₅₄ plates with the following solvent system (v/v); chloroform : methanol : acetic acid (95 : 10 : 3). The plates were visualized with UV light (λ = 254 nm) and revealed with a 5 % solution of ninhydrin in ethanol. Melting points were determined on a Yanagimoto micro-melting point apparatus (YANAKO Measuring Instrument Trading Co., Kyoto, Japan). ¹H NMR spectra were recorded on an Agilent DD2 600-MHz NMR spectrometer (Agilent Technologies, California, USA). Peptide concentrations were about 5.0 mM in CD₃CN. Chemical shifts were measured relative to internal trimethylsilane at 0.00 ppm. The protons were assigned using two dimensional correlated spectroscopy (2D-COSY) and rotating-frame Overhauser effect spectroscopy (ROESY; mixing time = 500 ms). High-resolution mass spectra (HR-MS) were obtained using FAB mass spectrometry on a JMS-700 mass spectrometer (JEOL LTD., Tokyo, Japan).

Synthesis of Boc-D-Val(Thz)-OMe

Boc-D-Val(Thz)-OMe was prepared according to previous report (Y. Hamada *et. al., J. Org. Chem.* 1987, **52**, 1252-1255) (Scheme S1). N-(*tert*-butoxycarbonyl)-D-valine (Boc-D-Val-OH) was first converted to the corresponding methyl ester by using methyl iodide in the presence of potassium hydrogen carbonate in N, N-dimethylformamide (DMF) at room temperature. The methyl ester was reduced with lithium chloride-sodium borohydride in tetrahydrofuran (THF) to give the amino alcohol derivative. Oxidation of the amino alcohol derivative was conveniently accomplished by the dimethyl sulfoxide (DMSO) oxidation using sulfur trioxide-pyridine complex ($Py \cdot SO_3$) in the presence of trimethylamine (Et₃N), giving the amino aldehyde derivative. Condensation of the amino aldehyde derivative with L-cysteine methyl ester (H-L-Cys-OMe) afforded the thiazolidine derivative as a mixture of C-2 epimers. Oxidation of the thiazolidine derivative to the Boc-D-Val(Thz)-OMe was performed with activated manganese dioxide (Sigma-Aldrich Co. Llc., St. Louis, USA) in benzene.

Scheme S1

General procedure for the condensation

Peptides were synthesized by a conventional liquid-phase method according to Scheme S2. The liner peptide were synthesized using 1-hydroxy-benzotiazole (HOBt) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan) and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan), and cyclization was conducted with benzotriazolyloxy-tris(pyrrolidino)-phosphonium hexafluorophosphate (PyBOP) (Watanabe Chemical Ind. Ltd., Hiroshima, Japan) in the presence of 4-dimethylaminopyridine (DMAP) (Nacalai tesque, Kyoto, Japan).

Xxx = Abu (8), Nva (9), Tbu (10), Chg (11), Tle (12)

Scheme S2

Synthesis of oxazoline rings

The oxazoline (Oxz) rings were formed by reacting the Ile–*allo*-Thr moiety with bis(2methoxyethyl)aminosulfur trifluoride (Deoxo-Fluor) (Fujifilm Wako Pure Chemical, Osaka, Japan) according to previous report (A. J. Phillips *et. al.*, *Org. Lett.* 2000, **2**, 1165-1168) (Scheme S3).

Scheme S3

Characterization of peptide 8

R_f = 0.72. Mp. 115–118 °C. HR-FAB MS (matrix: Glycerol) calcd for $[C_{34}H_{48}N_8O_6S_2 + H]^+$ = 729.3211, found *m/z* 729.3215. ¹H NMR (600 MHz, CD₃CN, 298 K) δ = 7.82 (d, 1H, NH Abu¹, J = 6.6 Hz); 7.75 (d, 1H, NH Ile⁵, J = 7.8 Hz); 7.68 (s, 2H, H Thz^{4,8}); 7.22 (d, 1H, NH D-Val³, J = 10.2 Hz); 7.14 (d, 1H, NH D-Val⁷, J = 10.2); 5.16 (dd, 1H, ^αH D-Val³, J = 10.2, 6.6 Hz); 5.13 (dd, 1H, ^αH D-Val⁷, J = 10.2, 6.6 Hz); 4.87 (qd, 1H, ^βH Oxz⁶, J = 6.6, 4.8); 4.78 (qd, 1H, ^βH Oxz², J = 6.0, 4.5); 4.71 (q, 1H, ^αH Abu¹, J = 6.6 Hz); 4.64 (t, 1H, ^αH Ile⁵, J = 7.8 Hz); 4.30 (dd, 1H, ^αH Oxz², J = 4.5, 0.6 Hz); 4.29 (dd, 1H, ^αH Oxz⁶, J = 4.8, 0.6 Hz); 2.34 (oct., 2H, ^βH D-Val^{3,7}, J = 6.6 Hz); 2.05 (m, 1H, ^βH Ile⁵); 1.41 (d, 3H, ^γH Oxz⁶, J = 6.6 Hz); 1.40 (d, 3H, ^γH Oxz², J = 6.0 Hz); 1.40 (m, 1H, ^{γ12}H Ile⁵); 1.20 (m, 1H, ^{γ13}H Ile⁵); 1.12 (d, 3H, ^{γ1}H D-Val³, J = 6.6 Hz); 1.11 (d, 3H, ^{γ1}H D-Val⁷, J = 6.6 Hz); 1.05 (d, 6H, ^{γ2}H D-Val^{3,7}, J = 6.6 Hz); 0.83 (d, 3H, ^{γ2}H Ile⁵, J = 6.6 Hz); 0.78 (t, 3H, ^γH Abu¹, J = 7.2 Hz); 0.77 (t, 3H, ⁸H Ile⁵, J = 7.2 Hz).

Characterization of peptide 9

 $R_f = 0.71$. Mp. 201–202 °C. HR-FAB MS (matrix: Glycerol) calcd for $[C_{35}H_{50}N_8O_6S_2 + H]^+$ = 743.3367, found m/z 743.3378. ¹H NMR (600 MHz, CD₃CN, 298 K) δ = 7.84 (d, 1H, NH Nva¹, J = 7.2 Hz); 7.79 (d, 1H, NH Ile⁵, J = 7.8 Hz); 7.71 (s, 1H, H Thz^{4or8}); 7.70 (s, 1H, H Thz^{4or8}); 7.23 (d, 1H, NH D-Val^{3or7}, J = 10.2 Hz); 7.16 (d, 1H, NH D-Val^{3or7}, J = 10.2); 5.15 (dd, 1H, ^αH D-Val^{3or7}, J = 10.2, 5.4 Hz); 5.13 (dd, 1H, ^αH D-Val^{3or7}, J = 10.2, 5.4 Hz); 4.85 (qd, 1H, ^βH Oxz⁶, J = 6.6, 4.5); 4.80 (qd, 1H, ^βH Oxz², J = 6.0, 4.5); 4.76 (q, 1H, ^αH Nva¹, J = 7.2 Hz); 4.65 (t, 1H, ^αH Ile⁵, J = 7.8 Hz); 4.30 (d, 2H, ^αH Oxz^{2.6}, J = 4.5 Hz); 2.35 (m, 1H, ^βH D-Val^{3or7}); 2.33 (m, 1H, ^βH D-Val^{3or7}); 2.03 (m, 1H, ^βH Ile⁵); 1.92 (m, 1H, ^{β12}H Nva¹); 1.72 (m, 1H, ^{β13}H Nva¹); 1.42 (d, 3H, ^γH Oxz⁶, J = 6.0 Hz); 1.40 (d, 3H, ^γH Oxz², J = 6.0 Hz); 1.40 (m, 3H, ^{γ12}H Ile⁵); 1.27 (m, 1H, ^{γ12}H Nva¹); 1.19 (m, 1H, ^{γ13}H Ile⁵); 1.11 (d, 3H, ^{γ1}H D-Val^{3or7}, J = 6.0 Hz); 0.82 (d, 3H, ^{γ2}H D-Val^{3or7}, J = 6.0 Hz); 0.79 (t, 3H, ^δH Nva¹, J = 6.6 Hz); 0.77 (t, 3H, ^δH Ile⁵, J = 7.2 Hz).

Characterization of peptide 10

 $R_f = 0.61$. Mp. 205–208 °C. HR-FAB MS (matrix: Glycerol) calcd for $[C_{37}H_{54}N_8O_6S_2 + H]^+$ = 771.3680, found m/z 771.3688. ¹H NMR (600 MHz, CD₃CN, 298 K) δ = 7.61 (d, 1H, NH Tbu¹, J = 7.2 Hz); 7.52 (d, 1H, NH Ile⁵, J = 7.8 Hz); 7.53 (s, 2H, H Thz^{4,8}); 7.17 (d, 1H, NH D-Val³, J = 10.8 Hz); 7.08 (d, 1H, NH D-Val⁷, J = 10.2); 5.15 (dd, 1H, ^αH D-Val³, J = 10.8, 3.6 Hz); 5.13 (dd, 1H, ^αH D-Val⁷, J = 10.2, 3.6 Hz); 4.92 (qd, 1H, ^βH Oxz⁶, J = 6.6, 3.6); 4.89 (ddd, 1H, ^αH Tbu¹, J = 9.6, 7.2, 4.2 Hz); 4.81 (qd, 1H, ^βH Oxz², J = 6.6, 3.6); 4.60 (dd, 1H, ^αH Ile⁵, J = 10.8, 7.8 Hz); 4.32 (d, 1H, ^αH Oxz⁶, J = 3.6 Hz); 4.31 (d, 1H, ^αH Oxz², J = 3.6 Hz); 2.37 (sept.d, 1H, ^βH D-Val³, J = 6.6, 3.6 Hz); 2.36 (sept.d, 1H, ^βH D-Val⁷, J = 6.6, 3.6 Hz); 2.23 (m, 1H, ^βH Ile⁵); 2.12 (dd, 1H, ^β¹²H Tbu¹, J = 13.8, 9.6 Hz); 1.63 (dd, 1H, ^β¹³H Tbu¹, J = 13.8, 4.2 Hz); 1.58 (m, 1H, ^{γ12}H Ile⁵); 1.44 (d, 3H, ^γH Oxz⁶, J = 6.6 Hz); 1.41 (d, 3H, ^γH Oxz², J = 6.6 Hz); 1.32 (m, 1H, ^{γ13}H Ile⁵); 1.12 (d, 3H, ^{γ1}H D-Val³, J = 6.6 Hz); 1.09 (d, 9H, ^{γ1}H D-Val⁷, ^{γ2}H D-Val^{3,7}, J = 6.6 Hz); 0.98 (d, 3H, ^{γ2}H Ile⁵, J = 5.4 Hz); 0.97 (s, 9H, ⁸H Tbu¹); 0.85 (t, 3H, ⁸H Ile⁵, J = 7.2 Hz).

Characterization of peptide 11

 $R_f = 0.72$. Mp. 283–284 °C. HR-FAB MS (matrix: Glycerol) calcd for $[C_{38}H_{54}N_8O_6S_2 +H]^+$ = 783.3680, found m/z 783.3681. ¹H NMR (600 MHz, CD₃CN, 298 K) δ = 8.01 (d, 1H, NH Ile⁵, J = 7.8 Hz); 7.92 (d, 1H, NH Chg¹, J = 7.8 Hz); 7.85 (s, 2H, H Thz^{4,8}); 7.26 (d, 1H, NH D-Val^{3or7}, J = 9.6 Hz); 7.25 (d, 1H, NH D-Val^{3or7}, J = 10.2); 5.15 (dd, 1H, ^{\alpha}H D-Val^{3or7}, J = 9.6, 6.6 Hz); 5.14 (dd, 1H, ^{\alpha}H D-Val^{3or7}, J = 10.2, 6.6 Hz); 4.81 (quint., 2H, ^{\beta}H Oxz^{2,6}, J = 6.0); 4.69 (ddd, 1H, ^{\alpha}H Ile⁵, J = 7.8, 5.4, 1.2); 4.63 (ddd, 1H, $^{\alpha}$ H Chg¹, J = 7.8, 5.7, 1.2 Hz); 4.28 (dd, 1H, $^{\alpha}$ H Oxz^{2or6}, J = 6.0, 1.2 Hz); 4.27 (dd, 1H, $^{\alpha}$ H Oxz^{2or6}, J = 6.0, 1.2 Hz); 2.30 (oct., 1H, $^{\beta}$ H D-Val^{3or7}, J = 6.6 Hz); 1.94 (m, 1H, $^{\beta}$ H Ile⁵); 1.80 (m, 1H, $^{\beta}$ H Chg¹); 1.43 (d, 3H, $^{\gamma}$ H Oxz^{2or6}, J = 6.0 Hz); 1.41 (d, 3H, $^{\gamma}$ H Oxz^{2or6}, J = 6.0 Hz); 1.35 (m, 1H, $^{\gamma}$ ¹²H Ile⁵); 1.19 (m, 1H, $^{\gamma}$ ¹³H Ile⁵); 1.10 (d, 6H, $^{\gamma}$ ¹H D-Val^{3,7}, J = 6.6 Hz); 1.00 (d, 3H, $^{\gamma}$ ²H D-Val^{3or7}, J = 6.6 Hz); 0.99 (d, 3H, $^{\gamma}$ ²H D-Val^{3or7}, J = 6.6 Hz); 0.76 (t, 3H, $^{\delta}$ H Ile⁵, J = 7.2 Hz).

Characterization of peptide 12

 $R_f = 0.88$. Mp. 252–253 °C. HR-FAB MS (matrix: Glycerol) calcd for $[C_{36}H_{52}N_8O_6S_2 + H]^+$ = 757.3524, found m/z 757.3529. ¹H NMR (600 MHz, CD₃CN, 298 K) δ = 8.22 (d, 1H, NH Tle¹, J = 9.0 Hz); 8.14 (d, 1H, NH Ile⁵, J = 7.8 Hz); 8.01 (s, 1H, H Thz^{4or8}); 8.00 (s, 1H, H Thz^{4or8}); 7.41 (d, 1H, NH D-Val⁷, J = 10.2 Hz); 7.40 (d, 1H, NH D-Val³, J = 9.6); 5.21 (dd, 1H, ^αH D-Val⁷, J = 10.2, 7.2 Hz); 5.11 (dd, 1H, ^αH D-Val³, J = 9.6, 7.8 Hz); 4.83 (quint., 1H, ^βH Oxz², J = 6.0); 4.81 (quint., 1H, ^βH Oxz⁶, J = 6.0); 4.75 (ddd, 1H, ^αH Ile⁵, J = 7.5, 3.6, 1.8 Hz); 4.48 (dd, 1H, ^αH Tle¹, J = 9.0, 1.8 Hz); 4.28 (dd, 1H, ^αH Oxz⁶, J = 6.0, 1.8 Hz); 4.25 (dd, 1H, ^αH Oxz², J = 6.0, 1.8 Hz); 2.26 (m, 1H, ^βH D-Val³); 2.23 (m, 1H, ^βH D-Val⁷); 2.23 (m, 1H, ^βH Ile⁵); 1.82 (m, 1H, ^βH Ile⁵); 1.42 (d, 3H, ^γH Oxz⁶, J = 6.0 Hz); 1.41 (d, 3H, ^γH Oxz², J = 6.0 Hz); 1.18 (m, 1H, ^{γ12}H Ile⁵); 1.10 (m, 1H, ^{γ13}H Ile⁵); 1.09 (d, 3H, ^{γ1}H D-Val³, J = 6.6 Hz); 1.08 (d, 3H, ^{γ1}H D-Val⁷, J = 6.6 Hz); 0.97 (d, 3H, ^{γ2}H D-Val⁷, J = 6.6 Hz); 0.94 (d, 3H, ^{γ2}H D-Val³, J = 6.6 Hz); 0.76 (s, 9H, ^γH Tle¹); 0.70 (d, 3H, ^{γ2}H Ile⁵, J = 6.6 Hz); 0.61 (t, 3H, ⁸H Ile⁵, J = 7.2 Hz).

¹H NMR spectra of peptides 8-12

Fig. S1 1D ¹H NMR spectrum of peptide **8** in CD₃CN at 298 K.

Fig. S2 2D ¹H-¹H COSY spectrum of peptide 8 in CD₃CN at 298 K.

Fig. S3 2D ¹H-¹H ROESY spectrum of peptide **8** in CD₃CN at 298 K.

Fig. S4 1D ¹H NMR spectrum of peptide 9 in CD₃CN at 298 K.

Fig. S5 2D ¹H-¹H COSY spectrum of peptide **9** in CD₃CN at 298 K.

Fig. S6 2D ¹H-¹H ROESY spectrum of peptide **9** in CD₃CN at 298 K.

Fig. S7 1D ¹H NMR spectrum of peptide 10 in CD₃CN at 298 K.

Fig. S8 2D ¹H-¹H COSY spectrum of peptide **10** in CD₃CN at 298 K.

Fig. S9 2D ¹H-¹H ROESY spectrum of peptide 10 in CD₃CN at 298 K.

Fig. S10 1D ¹H NMR spectrum of peptide 11 in CD₃CN at 298 K.

Fig. S11 2D ¹H-¹H COSY spectrum of peptide 11 in CD₃CN at 298 K.

Fig. S12 2D ¹H-¹H ROESY spectrum of peptide 11 in CD₃CN at 298 K.

Fig. S13 1D ¹H NMR spectrum of peptide 12 in CD₃CN at 298 K.

Fig. S14 2D ¹H-¹H COSY spectrum of peptide 12 in CD₃CN at 298 K.

Fig. S15 2D ¹H-¹H ROESY spectrum of peptide 12 in CD₃CN at 298 K.

HPLC analyses for peptides 8-12

HPLC analyses for peptides 8-12 were performed using analytical reverse HPLC system (2000 Series, JASCO LTD., Tokyo, Japan), equipped with PU-2089 HPLC pump, a 2077-UV intelligent UV/Vis detector, and COSMOSIL $5C_{18}$ -MS-II packed column (4.6 x 150 mm, 5 µm particle size, Nacalai tesque, Kyoto, Japan). Ctehromatographies were carried out by a flow rate of 1 mL/min and monitored at 245 nm. Elution solvents used acetonitrile/water + 0.1 % formic acid from 50 to 100% in 18 min. HPLC profiles of peptides 8-12 were shown in Fig. S16.

Fig. S16 HPLC profiles of peptides 8-12.

Crystallographic data for peptides 10-12

Peptide	10	11	12
Formula	$C_{37}H_{54}N_8O_6S_2$	$C_{38}H_{54}N_8O_6S_2$	$C_{36}H_{52}N_8O_6S_2$
	2(C ₃ H ₇ NO)	2(C ₄ H ₉ NO) H ₂ O	2(C ₃ H ₇ NO)
Formula Weight	917.20	975.27	903.17
Cell System	monoclinic	tetragonal	monoclinic
Space Group	P2 ₁	P4 ₁	C2
<i>a</i> , Å	12.9799(6)	12.9682(9)	15.917(3)
b, Å	12.1900(7)	12.9682(9)	12.1964(19)
<i>c</i> , Å	15.9375(8)	30.798(3)	12.962(2)
α , deg	90.0	90.0	90.0
β, deg	102.703(5)	90.0	102.303(2)
γ, deg	90.0	90.0	90.0
Volume, Å ³	2460.0(2)	5179.4(7)	2458.5(7)
Ζ	2	4	2
Dc, g cm ⁻³	1.238	1.251	1.220
<i>F</i> (000)	984	2096	968
μ , mm ⁻¹	1.464 (Cu Ka)	0.164 (Mo Kα)	0.166 (Mo Kα)
Wavelength, Å	1.54178	0.71073	0.71073
No. of reflections (obs)	13264	47663	9560
R _{INT}	0.0321	0.0370	0.0366
$\theta_{\rm max}$, deg	67.729	27.87	26.37
No. of reflections	5358	10492	4460
(<i>I</i> >2 σ (<i>I</i>))			
Flack parameter	0.38(2)	0.09(11)	0.1(2)
<i>R</i> 1	0.0993	0.0799	0.0962
wR	0.2545	0.2149	0.2606
Goodness of fit	0.858	1.034	1.153
$(\Delta/\sigma)_{max}$	0.064	0.011	0.007
Fraction for θ_{max}	0.999	0.999	0.994
$\Delta \rho_{max}$, e Å ⁻³	0.605	1.637	0.613
$\Delta \rho_{min}$, e Å ⁻³	-0.453	-0.560	-0.238
CCDC Number	2007056	2007057	2007058

 Table S1.
 Crystal and experimental data for peptides 10-12.

Desidue	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
lle ¹	7.93	4.72	1.91	γCH ₂ 1.23, 1.12	γCH₃ 0.76	0.68	
	d, J = 8.4	ddd, J = 8.4, 5.4, 1.2	m	m, m	d, J = 6.6	t, J = 7.2	
Oxz ²		4.28 dd, J = 6.0, 1.2	4.80 quint. J = 6.0	1.42 d, J = 6.0			
	7.26	5.15	2.30	γCH ₃ 1.10, γ'CH ₃ 1.00			
D-vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz^4							7.87 s
110 ⁵	7.93	4.72	1.91	γCH ₂ 1.23, 1.12	γCH ₃ 0.76	0.68	
lie	d, J = 8.4	ddd, J = 8.4, 5.4, 1.2	m	m, m	d, J = 6.6	t, J = 7.2	
0v7 ⁶		4.28	4.80	1.42			
012		dd, J = 6.0, 1.2	quint. J = 6.0	d, J = 6.0			
	7.26	5.15	2.30	γCH ₃ 1.10, γ'CH ₃ 1.00			
D-vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ⁸							7.87
1112							S

Table S2. ¹H NMR chemical shifts of peptide 1 (ca. 5mM) in acetonitrile- d_3 at 298 K.

Table S3. Chemical shifts of amide and Thz protons of peptide 1 at various temperatures and their temperature coefficients.

T (K)	$\delta \text{ lle}^{1,5} \text{ HN (ppm)}$	δ D-Val ^{3,7} HN (ppm)	δ Thz ^{4,8} H (ppm)
273	7.88	7.28	7.82
283	7.90	7.27	7.84
293	7.92	7.27	7.86
303	7.94	7.27	7.88
313	7.97	7.28	7.90
323	7.98	7.28	7.92
333	8.00	7.28	7.93
Δδ/ΔΤ (ppb/K)	2.0	0.0	1.9

Fig. S17 Diagrams of the amide and Thz protons temperature coefficients of peptide 1.

Desidue	δ HN (ppm)	$δ$ H α (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Alo ¹	7.78	4.84	1.48				
Ala	d, J = 7.2	quint. J =7.2	d, J = 7.2				
$O_{1}\sigma^{2}$		4.29	4.78	1.40			
0,2		dd, J =4.5, 0.6	qd, J = 6.0, 4.5	d, J = 6.0			
	7.13	5.13	2.34	γCH ₃ 1.10, γ'CH ₃ 1.06			
D-vai	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 6.6, d, J = 6.6			
Thz ⁴							7.64
THZ							S
110 ⁵	7.69	4.65	2.12	γCH ₂ 1.43, 1.24	γCH ₃ 0.92	0.79	
lie	d, J = 7.8	t, J = 7.8	m	m, m	d, J = 7.2	t, J = 7.2	
0.76		4.30	4.87	1.42			
UXZ		dd, J = 4.8, 0.6	qd, J = 6.6, 4.8	d, J = 6.6			
	7.23	5.17	2.33	γCH ₃ 1.11, γ'CH ₃ 1.06			
D-vai	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 6.6, d, J = 6.6			
Thz ⁸							7.64
1112							S

Table S4. ¹H NMR chemical shifts of peptide 2 (ca. 5mM) in acetonitrile- d_3 at 298 K.

Table S5. Chemical shifts of amide and Thz protons of peptide **2** at various temperatures and their temperature coefficients.

T (K)	δ Ala ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	δ Thz ^{4,8} H (ppm)
273	7.74	7.09	7.64	7.21	7.55
283	7.75	7.10	7.66	7.22	7.58
293	7.77	7.12	7.67	7.23	7.62
303	7.79	7.14	7.71	7.24	7.66
313	7.81	7.15	7.72	7.25	7.70
323	7.84	7.17	7.75	7.26	7.74
333	7.86	7.18	7.78	7.26	7.78
Δδ/ΔT (ppb/K)	2.0	1.6	2.2	1.0	3.9

Fig. S18 Diagrams of the amide and Thz protons temperature coefficients of peptide 2.

	8 HN (nnm)	δ Hα (nnm)	S HB (nnm)	8 Hy (npm)		8 H8 (ppm)	S Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
V (s) ¹	7.85	4.59	2.15	γCH ₃ 0.85, γ'CH ₃ 0.75			
vai	d, J = 7.2	t, J = 7.2	m	d, J = 6.6, d, J = 6.6			
Oxz ²		4.29 dd, J =4.2, 1.2	4.83 qd, J = 6.6, 4.2	1.41 d, J = 6.6			
	7.21	5.14	2.33	γCH ₃ 1.11, γ'CH ₃ 1.02			
D-vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.78
1112							s
llo ⁵	7.86	4.68	1.99	γCH ₂ 1.31, 1.19	γCH ₃ 0.80	0.72	
	d, J = 6.6	t, J = 6.6	m	m, m	d, J = 7.2	t, J = 7.2	
		4.30	4.82	1.42			
0,2		dd, J = 4.5, 1.2	qd, J = 6.0, 4.5	d, J = 6.0			
	7.23	5.15	2.31	γCH ₃ 1.10, γ'CH ₃ 1.02			
D-Vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ^{40r8}							7.79
1112							s

Table S6. ¹H NMR chemical shifts of peptide **3** (ca. 5mM) in acetonitrile- d_3 at 298 K.

The chemical shifts of Thz⁴H and Thz⁸H were indistinguishable.

Table S7. Chemical shifts of amide and Thz protons of peptide **3** at various temperatures and their temperature coefficients.

T (K)	δ Val ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$
273	7.79	7.20	7.79	7.20	7.70	7.70
283	7.82	7.20	7.82	7.22	7.73	7.74
293	7.84	7.21	7.84	7.23	7.76	7.78
303	7.86	7.21	7.88	7.23	7.80	7.81
313	7.89	7.22	7.91	7.25	7.82	7.84
323	7.91	7.23	7.93	7.25	7.85	7.86
333	7.93	7.23	7.96	7.26	7.87	7.89
$\Delta\delta/\Delta T$	0.0	0.6	20	0.0	2.0	2.1
(ppb/K)	2.3	0.0	2.9	0.9	2.9	3.1

Fig. S19 Diagrams of the amide and Thz protons temperature coefficients of peptide 3.

VT-NMR data for peptide 4

Desides	δ HN (ppm)	$δ$ H α (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
L ou ¹	7.71	4.81	γCH ₂ 2.02, 1.55	1.58		δCH ₃ 0.93, δ'CH ₃ 0.88	
Leu	d, J = 6.6	m	m, m	m		d, J = 6.6, d, J = 6.6	
0×7^2		4.30	4.81	1.39			
0.2		d, J = 3.0	m	d, J = 6.0			
	7.20	5.16	2.35	γCH ₃ 1.12, γ'CH ₃ 1.07			
D-vai	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 7.2, d, J = 7.2			
Thz ⁴							7.60
1112							S
110 ⁵	7.67	4.61	2.14	γCH ₂ 1.52, 1.27	γCH ₃ 0.91	0.82	
IIC	d, J = 7.8	dd, J = 9.3, 7.8	m	m, m	d, J = 7.2	t, J = 7.2	
0 1 7 6		4.31	4.87	1.43			
012		d, J = 4.2	qd, J = 6.0, 4.2	d, J = 6.0			
	7.11	5.14	2.35	γCH ₃ 1.10, γ'CH ₃ 1.07			
D-vai	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 7.2, d, J = 7.2			
Thz ⁸							7.60
1112							s

Table S8. ¹H NMR chemical shifts of peptide 4 (ca. 5mM) in acetonitrile- d_3 at 298 K.

Table S9. Chemical shifts of amide and Thz protons of peptide **4** at various temperatures and their temperature coefficients.

T (K)	δ Leu ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	δ Thz ^{4,8} H (ppm)
273	7.67	7.19	7.62	7.08	7.53
283	7.68	7.19	7.64	7.09	7.56
293	7.70	7.20	7.66	7.11	7.59
303	7.72	7.21	7.68	7.12	7.62
313	7.74	7.21	7.71	7.14	7.66
323	7.76	7.22	7.74	7.15	7.69
333		7.23		7.17	7.73
Δδ/ΔT (ppb/K)	1.9	0.7	2.4	1.5	3.3

Fig. S20 Diagrams of the amide and Thz protons temperature coefficients of peptide 4.

Residue	δ HN (ppm)	δ Hα (ppm)	δ H β (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Dho ¹	7.85	5.07	γCH ₂ 3.31, 3.25				Ar 7.28-7.25, 7.23-7.19
FILE	d, J = 6.6	ddd, J = 10.8, 6.6, 5.4	dd, J = 13.2, 10.8, dd, J = 13.2, 5.4				
$\Omega x z^2$		4.10	4.73	1.18			
0.2		d, J = 3.6	qd, J = 6.6, 3.6	d, J = 6.6			
D-Val ³	7.12	5.14	2.35	γCH ₃ 1.10, γ'CH ₃ 1.05			
D=vai	d, J = 10.2	dd, J = 10.2, 4.2	m	d, J = 6.6, d, J = 6.6			
Thz ^{4or8}							7.59
1112							s
11e ⁵	7.63	4.64	2.29	γCH ₂ 1.58, 1.31	γCH₃ 0.98	0.87	
	d, J = 7.8	dd, J = 9.9, 7.8	m	m, m	d, J = 7.2	t, J = 7.2	
		4.33	4.92	1.42			
0.2		d, J = 3.6	qd, J = 6.6, 3.6	d, J = 6.6			
	7.11	5.15	2.35	γCH ₃ 1.10, γ'CH ₃ 1.09			
D-vai	d, J = 10.2	dd, J = 10.2, 4.2	m	d, J = 6.6, d, J = 6.6			
Thz ^{40r8}							7.60
1112							S

Table S10. ¹H NMR chemical shifts of peptide 5 (ca. 5mM) in acetonitrile- d_3 at 298 K.

The chemical shifts of Thz⁴H and Thz⁸H were indistinguishable.

Table S11. Chemical shifts of amide and Thz protons of peptide 5 at various temperatures and their temperature coefficients.

T (K)	δ Phe ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$
273	7.83	7.11	7.59	7.09	7.52	7.54
283	7.84	7.12	7.61	7.1	7.55	7.56
293	7.85	7.12	7.62	7.11	7.58	7.59
303	7.86	7.13	7.64	7.12	7.61	7.62
313	7.87	7.14	7.66	7.13	7.65	7.66
323	7.88		7.69		7.69	7.69
333	7.90		7.72		7.73	7.73
$\Delta \delta / \Delta T$	1.1	0.7	2.1	1.0	3.5	3.2

Fig. S21 Diagrams of the amide and Thz protons temperature coefficients of peptide 5.

Desidus	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Cha ¹	7.68	4.83	1.98, 1.61				1.67-0.82 (10H, cyclohexyl CH ₂)
Ona	d, J = 6.6	m	m, m				m
Oxz ²		4.30	4.81	1.40			
		d, J = 3.6	qd, J = 6.6, 3.6	d, J = 6.6			
D_V/al ³	7.20	5.16	2.34	γCH ₃ 1.11, γ'CH ₃ 1.07			
D-vai	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 6.6, d, J = 6.6			
Thz ⁴							7.60
1112							S
110 ⁵	7.66	4.61	2.12	γCH ₂ 1.54, 1.28	γCH ₃ 0.92	0.82	
lie	d, J = 7.8	dd, J = 9.3, 7.8	m	m, m	d, J = 7.2	t, J = 7.2	
		4.31	4.87	1.42			
UXZ		d, J = 4.2	qd, J = 6.6, 4.2	d, J = 6.6, d, J = 6.6			
	7.12	5.14	2.34	γCH ₃ 1.10, γ'CH ₃ 1.07			
D-vai	d, J = 10.2	dd, J = 10.2, 4.8	m	d, J = 6.6, d, J = 6.6			
Th7 ⁸							7.60
1112							S

Table S12. ¹H NMR chemical shifts of peptide **6** (ca. 5mM) in acetonitrile- d_3 at 298 K.

Table S13. Chemical shifts of amide and Thz protons of peptide **6** at various temperatures and their temperature coefficients.

T (K)	δ Cha ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	$\delta \text{ Thz}^{4,8} \text{ H (ppm)}$
273	7.65	7.19	7.61	7.09	7.52
283	7.66	7.19	7.63	7.10	7.55
293	7.67	7.20	7.65	7.12	7.58
303	7.69	7.21	7.67	7.13	7.62
313	7.71	7.22	7.70	7.15	7.65
323	7.74	7.23	7.73	7.16	7.69
333	7.77	7.24	7.76	7.18	7.73
$\Delta\delta/\Delta T$	2.0	0.0	2.5	15	2.5
(ppb/K)	2.0	0.9	2.0	1.5	3.5

Fig. S22 Diagrams of the amide and Thz protons temperature coefficients of peptide 6.

Desidue	δ HN (ppm)	$δ$ H α (ppm)	δ H $β$ (ppm)	δ H _γ (ppm)		δ H $δ$ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Dha ¹	8.55	5.80					Ar 7.20-7.16, 7.05-7.03
Phy	d, J = 8.4	dd, J = 8.4, 1.2					
Oxz ²		4.39	4.68	1.42			
		dd, J = 6.6, 1.2	m	d, J = 6.6, d, J = 6.6			
	7.58	5.20	2.31	γCH ₃ 1.15, γ'CH ₃ 0.98			
D-vai	d, J = 9.6	dd, J = 9.6, 1.2	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ^{40r8}							8.12
THZ							S
llo ⁵	8.09	4.69	1.45	γCH ₂ 0.68, 0.98	γCH ₃ 0.18	0.37	
	d, J = 7.8	m	m	m, m	d, J = 6.6	t, J = 7.2	
0.76		4.24	4.69	1.34			
UXZ		dd, J = 6.6, 1.8	m	d, J = 6.6			
	7.31	5.09	2.32	γCH ₃ 1.12, γ'CH ₃ 0.95			
D-vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Th-40r8							7.98
1112	1						s

Table S14. ¹H NMR chemical shifts of peptide 7 (ca. 5mM) in acetonitrile- d_3 at 298 K.

The chemical shifts of Thz⁴H and Thz⁸H were indistinguishable.

Table S15. Chemical shifts of amide and Thz protons of peptide 7 at various temperatures and their

T (K)	δ Phg ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	δ Thz ^{4or8} H (ppm)	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$
273	8.58	7.65	8.12	7.37	8.12	7.97
283	8.56	7.62	8.11	7.34	8.12	7.98
293	8.56	7.59	8.10	7.32	8.12	7.98
303	8.55	7.57	8.09	7.31	8.12	7.98
313	8.54	7.55	8.08	7.30	8.12	7.99
323	8.54	7.53	8.08	7.29	8.12	7.99
333	8.54	7.52	8.08	7.28	8.12	7.99
$\Delta\delta/\Delta T$ (ppb/K)	*	-2.2	-0.7	-1.4	0.0	*

temperature coefficients.

*The correlation coefficients were less than 0.9.

Fig. S23 Diagrams of the amide and Thz protons temperature coefficients of peptide 7.

VT-NMR data for peptide 8

Table S16. ¹H NMR chemical shifts of peptide **8** (ca. 5mM) in acetonitrile- d_3 at 298 K.

Desidue	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Abu ¹	7.82	4.71	βCH ₂ 1.95, 1.79	0.78			
Abu	d, J = 6.6	q, J =6.6	m, m	t, J = 7.2			
Oxz ²		4.30 dd, J =4.5, 0.6	4.78 qd, J = 6.0, 4.5	1.40 d, J = 6.0			
	7.22	5.16	2.34	γCH ₃ 1.12, γ'CH ₃ 1.05			
D-vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ⁴							7.68
2							S
110 ⁵	7.75	4.64	2.05	γCH ₂ 1.40, 1.20	γCH ₃ 0.83	0.77	
	d, J = 7.8	t, J = 7.8	m	m, m	d, J = 6.6	t, J = 7.2	
		4.29	4.87	1.41			
0.2		dd, J = 4.8, 0.6	qd, J = 6.6, 4.8	d, J = 6.6			
	7.14	5.13	2.34	γCH ₃ 1.11, γ'CH ₃ 1.05			
D-vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ⁸							7.68
1112							S

Table S17. Chemical shifts of amide and Thz protons of peptide **8** at various temperatures and their temperature coefficients.

T (K)	δ Abu ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	δ Thz ^{4,8} H (ppm)
273	7.78	7.22	7.70	7.13	7.61
283	7.80	7.22	7.72	7.14	7.64
293	7.82	7.22	7.75	7.15	7.67
303	7.84	7.23	7.77	7.16	7.71
313	7.87	7.23	7.80	7.17	7.74
323	7.89	7.24	7.83	7.18	7.77
333	7.91	7.24	7.86	7.19	7.81
Δδ/ΔT (ppb/K)	2.2	*	2.7	1.0	3.3

*The correlation coefficient was less than 0.9.

Fig. S24 Diagrams of the amide and Thz protons temperature coefficients of peptide 8.

VT-NMR data for peptide 9

	Table S18. ¹ H NMI	R chemical shifts	of peptide 9 (ca. 5mM) in acetonitrile-d ₃	at 298 K.
--	-------------------------------	-------------------	----------------	---------	----------------------------------	-----------

D	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Nh/o ¹	7.84	4.76	βCH ₂ 1.92, 1.72	γCH ₂ 1.27, 1.10		0.79	
Inva	d, J = 7.2	q, J = 7.2	m, m	m, m		t, J = 6.6	
0×7^2		4.30	4.80	1.40			
0.2		d, J =4.5	qd, J = 6.0, 4.5	d, J = 6.0			
D Val ^{3or7}	7.23	5.15	2.33	γCH ₃ 1.11, γ'CH ₃ 1.04			
D-vai	d, J = 10.2	dd, J = 10.2, 5.4	m	d, J = 6.0, d, J = 6.0			
Thz ^{4or8}							7.70
1112							S
lle ⁵	7.79	4.65	2.03	γCH ₂ 1.40, 1.19	γCH ₃ 0.82	0.77	
	d, J = 7.8	t, J = 7.8	m	m, m	d, J = 6.6	t, J = 7.2	
0v7 ⁶		4.30	4.85	1.42			
0.2		d, J = 4.5	qd, J = 6.0, 4.5	d, J = 6.0			
D Val ^{3or7}	7.16	5.13	2.35	γCH ₃ 1.10, γ'CH ₃ 1.04			
D-val	d, J = 10.2	dd, J = 10.2, 5.4	m	d, J = 6.0, d, J = 6.0			
Thz ^{40r8}							7.71
1112							s

The chemical shifts of Thz⁴H and Thz⁸H were indistinguishable.

The chemical shifts of D-Val³ and D-Val⁷ were indistinguishable.

T (K)	δ Nva ¹ HN (ppm)	δ D-Val ^{3or7} HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ^{3or7} HN (ppm)	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$
273	7.79	7.23	7.73	7.14	7.63	7.63
283	7.81	7.23	7.75	7.15	7.66	7.66
293	7.83	7.23	7.78	7.16	7.69	7.70
303	7.85	7.24	7.80	7.17	7.72	7.73
313	7.87	7.24	7.83	7.18	7.75	7.76
323	7.89	7.24	7.85	7.18	7.78	7.79
333	7.91	7.25	7.88	7.20	7.81	7.82
$\Delta\delta/\Delta T$	20	_*	25	0.9	30	32
(ppb/K)	2.0		2.0	0.0	0.0	0.2

Table S19. Chemical shifts of amide and Thz protons of peptide 9 at various temperatures and their temperature coefficients.

*The correlation coefficient was less than 0.9.

Fig. S25 Diagrams of the amide and Thz protons temperature coefficients of peptide 9.

VT-NMR data for peptide 10

Desidue	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ Hγ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Thu ¹	7.61	4.89	βCH ₂ 2.12, 1.63			0.97	
TDU	d, J = 7.2	ddd, J = 9.6, 7.2, 4.2	dd, J = 13.8, 9.6, dd, J = 13.8, 4.2			s	
0×7^2		4.31	4.81	1.41			
0,2		d, J = 3.6	qd, J = 6.6, 3.6	d, J = 6.6			
	7.17	5.15	2.37	γCH ₃ 1.12, γ'CH ₃ 1.09			
D-vai	d, J = 10.8	dd, J = 10.8, 3.6	sept.d, J = 6.6, 3.6	d, J = 6.6, d, J = 6.6			
Thz ⁴							7.53
1112							S
110 ⁵	7.52	4.60	2.23	γCH ₂ 1.58, 1.32	γCH₃ 0.98	0.85	
IIC	d, J = 7.8	dd, J = 10.8, 7.8	m	m, m	d, J = 5.4	t, J = 7.2	
0.76		4.32	4.92	1.44			
0,2		d, J = 3.6	qd, J = 6.6, 3.6	d, J = 6.6			
	7.08	5.13	2.36	γCH ₃ 1.09, γ'CH ₃ 1.09			
D-vai	d, J = 10.2	dd, J = 10.2, 3.6	sept.d, J = 6.6, 3.6	d, J = 6.6, d, J = 6.6			
Thz ⁸							7.53
1112							s

Table S20. ¹H NMR chemical shifts of peptide **10** (ca. 5mM) in acetonitrile- d_3 at 298 K.

Table S21. Chemical shifts of amide and Thz protons of peptide 10 at various temperatures and their temperature coefficients.

T (K)	δ Tbu ¹ HN (ppm)	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	$\delta \text{ Thz}^{4 \text{or8}} \text{ H (ppm)}$	$\delta \text{ Thz}^{4 \text{ or 8}} \text{ H (ppm)}$
273	7.60	7.16	7.49	7.05	7.48	7.48
283	7.60	7.17	7.5	7.06	7.50	7.50
293	7.60	7.17	7.52	7.07	7.52	7.52
303	7.61	7.18	7.53	7.08	7.54	7.55
313	7.62	7.18	7.56	7.10	7.57	7.58
323	7.63	7.19	7.58	7.12	7.60	7.61
333	7.65	7.20	7.61	7.13	7.63	7.64
Δδ/ΔT (ppb/K)	*	0.6	2.0	1.4	2.5	2.7

*The correlation coefficient was less than 0.9.

Fig. S26 Diagrams of the amide and Thz protons temperature coefficients of peptide 10.

Desidue	δ HN (ppm)	δ H $α$ (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
Cha ¹	7.92	4.63	1.80				1.67-0.82 (10H, cyclohexyl CH ₂)
City	d, J = 7.8	ddd, J =7.8,5.7, 1.2	m				m
Oxz ^{2or6}		4.27 dd, J =6.0, 1.2	4.81 quint. J = 6.0	1.41 d, J = 6.0			
	7.25	5.14	2.30	γCH ₃ 1.10, γ'CH ₃ 0.99			
D-vai	d, J = 10.2	dd, J = 10.2, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ⁴							7.85
1112							S
⁵ مال	8.01	4.69	1.94	γCH ₂ 1.35, 1.19	γCH ₃ 0.72	0.76	
10	d, J = 7.8	ddd, J = 7.8, 5.4, 1.2	m	m, m	d, J = 7.2	t, J = 7.2	
Ova ^{20r6}		4.28	4.81	1.43			
0.2		dd, J = 6.0, 1.2	quint. J = 6.0	d, J = 6.0			
	7.26	5.15	2.30	γCH ₃ 1.10, γ'CH ₃ 1.00			
D-val	d, J = 9.6	dd, J = 9.6, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			
Thz ⁸							7.85
1112							S

Table S22. ¹H NMR chemical shifts of peptide 11 (ca. 5mM) in acetonitrile- d_3 at 298 K.

The chemical shifts of Oxz² and Oxz⁶ were indistinguishable.

The chemical shifts of D-Val³ and D-Val⁷ were indistinguishable.

Table S23. Chemical shifts of amide and Thz protons of peptide 11 at various temperatures and their temperature coefficients.

T (K)	δ Chg ¹ HN (ppm)	δ D-Val ^{3or7} HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ^{3or7} HN (ppm)	δ Thz ^{4,8} H (ppm)
273		7.25	7.95	7.25	7.80
283	7.87	7.25	7.97	7.25	7.82
293	7.90	7.25	8.00	7.26	7.84
303	7.93	7.25	8.02	7.26	7.87
313	7.95	7.26	8.04	7.27	7.89
323	7.98	7.26	8.06	7.27	7.90
333	7.99	7.26	8.07	7.28	7.92
$\Delta \delta / \Delta T$	2.5	*	2.1	0.5	2.0
(ppb/K)	2.0	_	Z. I	0.5	2.0

*The correlation coefficient was less than 0.9.

Fig. S27 Diagrams of the amide and Thz protons temperature coefficients of peptide 11.

D	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
	8.22	4.48		0.76			
TIC	d, J = 9.0	dd. J =9.0, 1.8		S			
O_{VT}^{2}		4.25	4.83	1.41			
0.2		dd, J = 6.0, 1.8	quint. J = 6.0	d, J = 6.0			
	7.40	5.11	2.26	γCH ₃ 1.09, γ'CH ₃ 0.94			
D-vai	d, J = 9.6	dd, J = 9.6, 7.8	m	d, J = 6.6, d, J = 6.6			
Th-40r8							8.00
THZ							S
110 ⁵	8.14	4.75	1.82	γCH ₂ 1.18, 1.10	γCH ₃ 0.70	0.61	
IIC	d, J = 7.8	ddd, J = 7.8, 3.6, 1.8	m	m, m	d, J = 6.6	t, J = 7.2	
0.76		4.28	4.81	1.42			
UXZ		dd, J = 6.0, 1.8	quint. J = 6.0	d, J = 6.0			
	7.41	5.21	2.23	γCH ₃ 1.08, γ'CH ₃ 0.97			
D-vai	d, J = 10.2	dd, J = 10.2, 7.2	m	d, J = 6.6, d, J = 6.6			
Tha ^{40r8}							8.01
1112							s

Table S24. ¹H NMR chemical shifts of peptide 12 (ca. 5mM) in acetonitrile- d_3 at 298 K.

The chemical shifts of Thz⁴H and Thz⁸H were indistinguishable.

Table S25. Chemical shifts of amide and Thz protons of peptide 12 at various temperatures and their temperature coefficients.

T (K)	Tle ¹ HN (ppm)	D-Val ³ HN (ppm)	lle ⁵ HN (ppm)	D-Val ⁷ HN (ppm)	Thz ^{4,8} H (ppm)	Thz ^{4,8} H (ppm)
273	8.22	7.44	8.14	7.42	7.99	8.01
283	8.22	7.42	8.14	7.41	8.00	8.01
293	8.23	7.41	8.14	7.40	8.00	8.01
303	8.23	7.41	8.14	7.39	8.00	8.01
313	8.23	7.40	8.15	7.39	8.00	8.01
323	8.23	7.40	8.15	7.38	8.00	8.01
333	8.23	7.40	8.15	7.39	8.00	8.02
Δδ/ΔT (ppb/K)	0.0	*	0.0	*	0.0	0.0

*The correlation coefficients were less than 0.9.

Fig. S28 Diagrams of the amide and Thz protons temperature coefficients of peptide 12.

VT-NMR data for T3ASC

Posiduo	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
10 ¹	8.05	4.86	1.87	γCH ₂ 1.18, 1.13	γCH ₃ 0.86	0.66	
lie	d, J = 9.0	ddd, J = 9.0, 3.3, 1.8	m	m, m	d, J = 6.6	t, J = 7.2	
0×7^2		4.23	4.71	1.45			
0.2		dd, J = 6.6, 1.8	quint. J = 6.6	d, J = 6.6			
	7.20	5.08	2.19	γCH ₃ 1.02, γ'CH ₃ 0.81			
D-vai	d, J = 10.2	dd, J = 10.2, 8.4	m	d, J = 6.6, d, J = 6.6			
Thz4							8.09
IIIZ							S
110 ⁵	8.14	5.38	2.01	γCH ₂ 1.53, 1.17	γCH ₃ 0.73	0.92	
IIC	d, J = 7.8	dd, J = 7.8, 6.6	m	m, m	d, J = 6.6	t, J = 7.2	
Tha		4.28	4.80	1.42			8.08
THZ		dd, J = 6.0, 1.2	quint. J = 6.0	d, J = 6.0			S
	8.23	5.35	2.29	γCH ₃ 1.09, γ'CH ₃ 1.02			
D-vai	d, J = 9.0	dd, J = 9.0, 6.6	oct. J = 6.6	d, J = 6.6, d, J = 6.6			8.09
Th7 ⁸							7.87
1112							S

Table S26. ¹H NMR chemical shifts of T3ASC (ca. 5mM) in acetonitrile-d₃ at 298 K.

Table S27. Chemical shifts of amide and Thz protons of T3ASC at various temperatures and their temperature coefficients.

T (K)	$\delta \text{ lle}^1 \text{ HN (ppm)}$	δ D-Val ³ HN (ppm)	δ lle ⁵ HN (ppm)	δ D-Val ⁷ HN (ppm)	δ Thz ^{4,8} H (ppm)	δ Thz ⁶ H (ppm)
273	8.06	7.23	8.14	8.27	8.09	8.08
283	8.06	7.22	8.14	8.25	8.09	8.08
293	8.05	7.21	8.14	8.23	8.09	8.08
303	8.05	7.21	8.14	8.24	8.09	8.08
313	8.05	7.20	8.14	8.22	8.09	8.08
323	8.05	7.20	8.14	8.21	8.09	8.08
333	8.05	7.21	8.13	8.21	8.09	8.08
$\Delta\delta/\Delta T$ (ppb/K)	0.0	*	0.0	*	0.0	0.0

*The correlation coefficients were less than 0.9.

Fig. S29 Diagrams of the amide and Thz protons temperature coefficients of T3ASC.

VT-NMR data for dASC

D	δ HN (ppm)	δ Hα (ppm)	δ Hβ (ppm)	δ H _γ (ppm)		δ Hδ (ppm)	δ Other protons (ppm)
Residue	³ J (Hz)	³ J (Hz)	³ J (Hz)	³ J (Hz)		³ J (Hz)	³ J (Hz)
l lo ¹	9.25	3.83	2.34	γCH ₂ 1.72, 1.16	γCH ₃ 0.98	0.88	
lie	d, J = 5.4	dd, J = 10.8, 5.4	m	m, m	d, J = 7.2	t, J = 7.2	
aThr ²	7.76 d, J = 7.2	3.49 t, J = 7.2	4.66 quint. J = 7.2	1.17 d, J = 7.2			
	7.82	5.33	2.37	γCH ₃ 1.14, γ'CH ₃ 1.08			
D-vai	d, J = 9.6	t, J = 9.6	m	d, J = 6.0, d, J = 6.0			
Thz ⁴							7.37
1112							S
110 ⁵	9.25	3.83	2.34	γCH ₂ 1.72, 1.16	γCH₃ 0.98	0.88	
iiC	d, J = 5.4	dd, J = 10.8, 5.4	m	m, m	d, J = 7.2	t, J = 7.2	
aThr ⁶	7.76	3.49	4.66	1.17			
ann	d, J = 7.2	t, J = 7.2	quint. J = 7.2	d, J = 7.2			
	7.82	5.33	2.37	γCH ₃ 1.14, γ'CH ₃ 1.08			
D-vai	d, J = 9.6	t, J = 9.6	m	d, J = 6.0, d, J = 6.0			
Thz ⁸							7.37
1112							S

Table S28. ¹H NMR chemical shifts of dASC (ca. 5mM) in acetonitrile- d_3 at 298 K.

Table S29. Chemical shifts of amide and Thz protons of *d*ASC at various temperatures and their temperature coefficients.

T (K)	$\delta \text{ lle}^{1,5} \text{ HN (ppm)}$	δ aThr ^{2,6} HN (ppm)	δ D-Val ^{3,7} HN (ppm)	$\delta \text{ Thz}^{4,8} \text{ H (ppm)}$
273	9.27	7.85	7.85	7.35
283	9.26	7.82	7.84	7.36
293	9.25	7.80	7.83	7.37
303	9.24	7.78	7.81	7.38
313	9.23	7.75	7.80	7.39
323	9.22	7.73	7.79	7.41
333	9.20	7.71	7.77	7.43
$\Delta\delta/\Delta T$	1 1	2.2	1.0	1 2
(ppb/K)	-1.1	-2.5	-1.3	1.3

Fig. S30 Diagrams of the amide and Thz protons temperature coefficients of dASC.

Thermodynamic parameters and van't Hoff plot of peptide 1

Т (К)	$\delta_{obs} \operatorname{Thz}^{4,8} H (ppm)$	<i>K</i> *	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.82	0.574	1258
283	7.84	0.510	1583
293	7.86	0.451	1940
303	7.88	0.396	2332
313	7.90	0.345	2766
323	7.92	0.298	3249
333	7.93	0.276	3566

 Table S30. Equilibrium parameters of peptide 1.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{\circ} = - \operatorname{RTln} K$

Fig. S31 van't Hoff plot of peptide 1.

 Table S31. Thermodynamic parameters of peptide 1.

ΔH° (kJ•mol ⁻¹)	$\Delta S^0 (J \cdot mol^{-1})$	ΔG°_{298K} (kJ•mol ⁻¹)*
-9.55	-39.40	2.19

 $\Delta G^{o} = \Delta H^{o} - T \Delta S^{o}$

Thermodynamic parameters and van't Hoff plot of peptide 2

<i>T</i> (K)	δ_{obs} Thz ^{4,8} H (ppm)	<i>K</i> *	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.55	2.700	-2254
283	7.58	2.217	-1874
293	7.62	1.741	-1350
303	7.66	1.387	-824
313	7.70	1.114	-282
323	7.74	0.897	291
333	7.78	0.721	906

 Table S32. Equilibrium parameters of peptide 2.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S32 van't Hoff plot of peptide 2.

 Table S33. Thermodynamic parameters of peptide 2.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	ΔG°_{298K} (kJ•mol ⁻¹)*
-16.76	-52.79	-1.03

 $*\Delta G^{\rm o} = \Delta H^{\rm o} - T \Delta S^{\rm o}$

Thermodynamic parameters and van't Hoff plots of peptide 3

<i>T</i> (K)	δ_{obs} Thz ^{4or8} H (ppm)	K*	$\Delta G^{\circ} (J \bullet mol^{-1})^{**}$	<i>T</i> (K)	$\delta_{obs} Thz^{4or8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.70	1.114	-246	273	7.70	1.114	-246
283	7.73	0.947	127	283	7.74	0.897	255
293	7.76	0.805	529	293	7.78	0.721	797
303	7.80	0.644	1107	303	7.81	0.609	1251
313	7.82	0.574	1442	313	7.84	0.510	1751
323	7.85	0.480	1971	323	7.86	0.451	2138
333	7.87	0.423	2382	333	7.89	0.370	2750

Table S34. Equilibrium parameters of peptide 3.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S33 van't Hoff plots of peptide 3.

Table S35.	Thermody	ynamic	parameters	of pe	ptide	3
						-

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	∆G [°] _{298K} (kJ•mol ^{−1})*	ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298K} (kJ \cdot mol^{-1})^*$
-12.44	-44.49	0.82	-13.60	-49.00	1.00

 $\Delta G^{o} = \Delta H^{o} - T \Delta S^{o}$

Thermodynamic parameters and van't Hoff plot of peptide 4

<i>T</i> (K)	$\delta_{obs} \operatorname{Thz}^{4,8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.53	3.111	-2576
283	7.56	2.524	-2178
293	7.59	2.083	-1788
303	7.62	1.741	-1396
313	7.66	1.387	-852
323	7.69	1.176	-436
333	7.73	0.947	150

Table S36. Equilibrium parameters of peptide 4.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of dASC at 273 K.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S34 van't Hoff plot of peptide 4.

 Table S37. Thermodynamic parameters of peptide 4.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	ΔG°_{298K} (kJ•mol ⁻¹)*
-14.83	-44.67	-1.52

 $*\Delta G^{\rm o} = \Delta H^{\rm o} - T \Delta S^{\rm o}$

Thermodynamic parameters and van't Hoff plots of peptide 5

<i>T</i> (K)	$\delta_{\text{obs}} \text{Thz}^{4\text{or8}} \text{H} (\text{ppm})$	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$	<i>T</i> (K)	$\delta_{obs} Thz^{4or8} H (ppm)$	К*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.52	3.353	-2746	273	7.54	2.895	-2412
283	7.55	2.700	-2337	283	7.56	2.524	-2178
293	7.58	2.217	-1940	293	7.59	2.083	-1788
303	7.61	1.846	-1544	303	7.62	1.741	-1396
313	7.65	1.467	-997	313	7.66	1.387	-852
323	7.69	1.176	-436	323	7.69	1.176	-436
333	7.73	0.947	150	333	7.73	0.947	150

Table S38. Equilibrium parameters of peptide 5.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S35 van't Hoff plots of peptide 5.

 Table S39.
 Thermodynamic parameters of peptide 5.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	∆G [°] _{298K} (kJ•mol ⁻¹)*	ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	∆G [°] _{298K} (kJ•mol ⁻¹)*
-15.80	-47.50	-1.64	-14.22	-42.71	-1.49

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

Thermodynamic parameters and van't Hoff plot of peptide 6

<i>T</i> (K)	$\delta_{obs} \operatorname{Thz}^{4,8} H (ppm)$	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.52	3.353	-2746
283	7.55	2.700	-2337
293	7.58	2.217	-1940
303	7.62	1.741	-1396
313	7.65	1.467	-997
323	7.69	1.176	-436
333	7.73	0.947	150

Table S40. Equilibrium parameters of peptide 6.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S36 van't Hoff plot of peptide 6.

Table S41. Thermodynamic parameters of peptide 6.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	ΔG°_{298K} (kJ•mol ⁻¹)*
-15.8	-47.6	-1.62

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

Thermodynamic parameters and van't Hoff plot of peptide 8

<i>T</i> (K)	$\delta_{obs} \operatorname{Thz}^{4,8} H (ppm)$	<i>K</i> *	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.61	1.846	-1392
283	7.64	1.552	-1034
293	7.67	1.313	-662
303	7.71	1.056	-136
313	7.74	0.897	282
323	7.77	0.762	730
333	7.81	0.609	1374

Table S42. Equilibrium parameters of peptide 8.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{\circ} = - \operatorname{RTln} K$

Fig. S37 van't Hoff plot of peptide 8.

Table S43. Thermodynamic parameters of peptide 8.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	ΔG°_{298K} (kJ•mol ⁻¹)*
-13.83	-45.23	-0.35

 $*\Delta G^{\rm o} = \Delta H^{\rm o} - T \Delta S^{\rm o}$

Thermodynamic parameters and van't Hoff plots of peptide 9

<i>T</i> (K)	Thz ^{4or8} H (ppm)	К*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$	<i>T</i> (K)	Thz ^{4or8} H (ppm)	K ^a *	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.63	1.643	-1127	273	7.63	1.643	-1127
283	7.66	1.387	-770	283	7.66	1.387	-770
293	7.69	1.176	-396	293	7.70	1.114	-264
303	7.72	1.000	0	303	7.73	0.947	136
313	7.75	0.850	423	313	7.76	0.805	565
323	7.78	0.721	879	323	7.79	0.682	1028
333	7.81	0.609	1374	333	7.82	0.574	1535

Table S44. Equilibrium parameters of peptide 9.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{\circ} = - \operatorname{RTln} K$

Fig. S38 van't Hoff plots of peptide 9.

Table S45.	Thermodynamic	parameters	of peptide 9.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	ΔG^{o}_{298K} (kJ•mol ⁻¹)*	ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	ΔG°_{298K} (kJ•mol ⁻¹)*
-12.44	-41.23	-0.15	-13.23	-44.18	-0.06

 $*\Delta G^{\rm o} = \Delta H^{\rm o} - T \Delta S^{\rm o}$

Thermodynamic parameters and van't Hoff plots of peptide 10

<i>T</i> (K)	Thz ^{4or8} H (ppm)	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$	<i>T</i> (K)	Thz ^{4or8} H (ppm)	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.48	4.692	-3509	273	7.48	4.692	-3509
283	7.50	3.933	-3222	283	7.50	3.933	-3222
293	7.52	3.353	-2947	293	7.52	3.353	-2947
303	7.54	2.895	-2678	303	7.55	2.700	-2502
313	7.57	2.364	-2238	313	7.58	2.217	-2072
323	7.60	1.960	-1807	323	7.61	1.846	-1646
333	7.63	1.643	-1374	333	7.64	1.552	-1216

Table S46. Equilibrium parameters of peptide 10.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S39 van't Hoff plots of peptide 10.

|--|

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	$\Delta G^{\circ}_{298K} (kJ \cdot mol^{-1})^*$	ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	∆G [°] _{298K} (kJ•mol ⁻¹)*
-13.17	-35.07	-2.71	-14.14	-38.59	-2.64

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

Thermodynamic parameters and van't Hoff plot of peptide 11

<i>T</i> (K)	Thz ^{4,8} H (ppm)	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$	
273	7.80	0.644	997	
283	7.82	0.574	1304	
293	7.84	0.510	1639	
303	7.87	0.423	2167	
313	7.89	0.370	2585	
323	7.90	0.345	2854	
333	7.92	0.298	3350	

 Table S48. Equilibrium parameters of peptide 11.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of dASC at 273 K.

** $\Delta G^{o} = - \operatorname{RTln} K$

Fig. S40 van't Hoff plot of peptide 11.

Table S49. Thermodynamic parameters of peptide 11.

ΔH° (kJ•mol ⁻¹)	$\Delta S^{\circ} (J \cdot mol^{-1})$	ΔG°_{298K} (kJ•mol ⁻¹)*
-9.85	-39.55	1.93

 $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$

Thermodynamic parameters of peptide 7

<i>T</i> (K)	Thz ^{4,8} H (ppm)	K*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.97	0.194	3727
283	7.98	0.175	4106
293	7.98	0.175	4251
298	7.98	0.175	4324
303	7.98	0.175	4397
313	7.99	0.156	4831
323	7.99	0.156	4985
333	7.99	0.156	5139

Table S50. Equilibrium parameters of peptide 7.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of *d*ASC at 273 K.

** $\Delta G^{\circ} = - \operatorname{RTln} K$

Thermodynamic parameters of peptide 12

7 (K)	Thz ^{4or8} H (ppm)	К*	$\Delta G^{\circ} (J \cdot mol^{-1})^{**}$	<i>T</i> (K)	Thz ^{4 or 8} H (ppm)	K*	$\Lambda G^{\circ} (J \cdot mol^{-1})^{**}$
273	7.99	0.156	4213	273	8 01	0 121	4700
283	8.00	0.138	4652	213	0.01	0.121	4750
293	8.00	0.138	4816	283	8.01	0.121	4905
298	8.00	0 138	4907	293	8.01	0.121	5140
303	8.00	0.138	4981	303	8.01	0.121	5316
313	8.00	0.138	5145	313	8.01	0.121	5491
323	8.00	0.138	5310	323	8.01	0.121	5667
333	8.00	0.138	5474	333	8.02	0.104	6254

 Table S51. Equilibrium parameters of peptide 12.

*Equilibrium constants were calculated from the values of the chemical shifts of Thz⁴ and Thz⁸ protons: $K = (\delta_s - \delta_{obs}) / (\delta_{obs} - \delta_f)$. δ_s (8.09 ppm) is the chemical shift for Thz proton of T3ASC. δ_f (7.35 ppm) is chemical shift for Thz proton of dASC at 273 K.

** $\Delta G^{\circ} = - \operatorname{RTln} K$

CD spectral changes by TFE titration for 2-7

Fig. S41 CD spectral changes elicited by titration of TFE for peptides **2**-**7**. The spectra were measured in CH₃CN solution while changing the TFE concentration (10%, 20%, 30%, 40%, 50% and 100%). The spectra in 100% CH₃CN and 100% TFE solution are drawn in bold and dashed lines, respectively. The spectra for **2-5** are taken from previous report (A. Asano *et. al., J. Peptide Res.*, 2002, **60**, 10-22). The spectra for **6** is taken from previous report (A. Asano *et. al., Acta Cryst.*, 2003, **C59**, 0488-0490). The spectra for **7** is taken from previous report (A. Asano *et. al., Bioorg. Med. Chem.*, 2011, **19**, 3372-3377).

Wavelength (nm)

Fig. S42 Temperature dependence of the CD spectra for peptides **2-7**. The spectra were measured every 20 K in CH₃CN solution at 273-333 K. The CD spectra at 273 and 333 K are drawn in bold and dashed lines, respectively. The spectra for **7** is taken from previous report (A. Asano *et. al., Bioorg. Med. Chem.*, 2011, **19**, 3372-3377).

Superimposition of the X-ray structures of 1and T3ASC

Fig. S43 Superimpositions of the crystal structures peptide **1** and T3ASC. Side chains and hydrogen atoms are omitted for clarity. Thin lines (black) represent the peptide ring of peptide **1**, and the sulfur atoms are represented by balls. This figure is taken from previous report (A. Asano *et. al., J. Pept. Sci.*, 2018, e3120).

The X-ray structure of dASC

Fig. S44 The crystal structure of *d*ASC. Thin lines represent hydrogen bonds. This figure is taken from previous report (A. Asano *et. al., Biopolymers* 2001, **58**, 295-304).