Electronic Supplementary Information for

## A Useful Preparation of Ultrasmall Iron Oxide Particles by using Arc Plasma Deposition

Yumi Ida,<sup>a</sup> Atsushi Okazawa,<sup>b,††</sup> Kazutaka Sonobe,<sup>c</sup> Hisanori Muramatsu,<sup>c</sup> Tetsuya Kambe,<sup>a,c</sup>

Takane Imaoka,<sup>a,c</sup> Wang-Jae Chun,<sup>d</sup> Makoto Tanabe,<sup>a,\*</sup> and Kimihisa Yamamoto<sup>a,c,\*</sup>

<sup>a</sup>JST-ERATO, Yamamoto Atom Hybrid Project, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

<sup>b</sup>Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan.

<sup>c</sup>Laboratory for Chemistry and Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan.

<sup>d</sup>Graduate School of Arts and Sciences, International Christian University, Mitaka, Tokyo 181-8585, Japan.

<sup>+†</sup>Present address: Division of Chemistry, Institute of Liberal Education, Nihon University School of Medicine, Tokyo 173-8610, Japan.

## **Table of Contents:**

| Table S1.   | Ratio of the shot count to the weight of the carbon supports.                                                | S2         |
|-------------|--------------------------------------------------------------------------------------------------------------|------------|
| Figure S1.  | HAADF-STEM images of $KB_{400}$ and $KB_{800}$ and its histograms.                                           | S3         |
| Figure S2.  | HAADF-STEM images of GO <sub>267</sub> and GO <sub>1068</sub> and its histograms.                            | S3         |
| Figure S3.  | HAADF-STEM images of GNP7494, GNP10900, and GNP18409 and its histograms.                                     | S4         |
| Figure S4.  | HAADF-STEM images of GNP <sub>20000</sub> .                                                                  | S4         |
| Figure S5.  | XPS spectra of GNP <sub>3666</sub> , GNP <sub>7494</sub> , GNP <sub>18409</sub> , and GNP <sub>20000</sub> . | S5         |
| Figure S6.  | XPS spectra of KB <sub>200</sub> , GO <sub>534</sub> .                                                       | S6         |
| Figure S7.  | The Fe K-edge pre-edge region of XANES in $GNP_{10900}$ and $\gamma$ -Fe <sub>2</sub> O <sub>3</sub> .       | S7         |
| Figure S8.  | STEM-EELS spectra of GNP <sub>20000</sub> and the standard samples.                                          | <b>S</b> 8 |
| Figure S9.  | Mössbauer spectra of GNP <sub>3666</sub> and GNP <sub>20000</sub>                                            |            |
|             | in the temperature range between 300 and 10 K.                                                               | <b>S</b> 8 |
| Table S2.   | Obtained parameters of <sup>57</sup> Fe Mössbauer spectra measured                                           |            |
|             | for GNP <sub>3666</sub> , GNP <sub>10900</sub> and GNP <sub>20000</sub> .                                    | S9         |
| Figure S10. | Plots of the $M_s$ and $H_c$ of the GNP <sub>nn</sub> series against the Fe wt%.                             | S10        |
| Figure S11. | Temperature dependent magnetization of the $GNP_{nn}$ series.                                                | S10        |
| Figure S12. | Fundamental properties of Fe60 with a fourth generation                                                      |            |
|             | dendritic phenylazomethine template (DPA G4).                                                                | S11        |

| Sample               | Shot count | Weight /g | Ratio (Shot count/g) |
|----------------------|------------|-----------|----------------------|
| KB <sub>200</sub>    | 200        | 0.09815   | 2038                 |
| KB400                | 400        | 0.09212   | 4342                 |
| $KB_{800}$           | 800        | 0.1001    | 7992                 |
| KB <sub>2000</sub>   | 20000      | 0.09521   | 21006                |
|                      |            |           |                      |
| GO <sub>134</sub>    | 134        | 0.3312    | 405                  |
| GO <sub>267</sub>    | 267        | 0.318     | 840                  |
| GO534                | 534        | 0.326     | 1638                 |
| GO <sub>1068</sub>   | 1068       | 0.3146    | 3395                 |
|                      |            |           |                      |
| GNP3666              | 3666       | 2.26      | 1622                 |
| GNP7494              | 7494       | 2.31      | 3244                 |
| GNP <sub>10900</sub> | 10900      | 2.55      | 4275                 |
| GNP <sub>18409</sub> | 18409      | 2.44      | 7545                 |

 Table S1. Ratio of the shot count to the weight of the carbon supports.



Figure S1. HAADF-STEM images and particle size distribution histograms of a)  $KB_{400}$  and b)  $KB_{800}$ .



**Figure S2.** HAADF-STEM images and particle size distribution histograms of a)  $GO_{267}$  and b)  $GO_{1068}$ .



**Figure S3.** HAADF-STEM images and particle size distribution histograms of a) GNP<sub>7494</sub>, b) GNP<sub>10900</sub>, and c) GNP<sub>18409</sub>.



**Figure S4.** HAADF-STEM images of GNP<sub>20000</sub> with three different scale bars; a) 20 nm, b) 50 nm, and c) 100 nm.



**Figure S5.** XPS spectra of a)  $GNP_{3666}$ , b)  $GNP_{7494}$ , and c)  $GNP_{18409}$ . d) Multiple components of Fe  $2p_{3/2}$  in  $GNP_{20000}$  were assigned as 710.11, 710.82, 711.87 and 713.21 eV. e) Summary of the binding energy parameters of  $GNP_{7494}$ ,  $GNP_{10900}$ , and  $GNP_{18409}$  at the peak top.



Figure S6. XPS analysis of a)  $KB_{200}$  and b)  $GO_{534}$ . c) Summary of the binding energy of  $KB_{200}$  and  $GO_{534}$  at the peak top.



**Figure S7.** The Fe K-edge pre-edge region of a)  $\text{GNP}_{10900}$  and b)  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>. These figures display the experimental data (red circles), the baseline, i.e. background function (broken line), a fitting curve to the data (black solid line), and the individual pre-edge peaks for  $T_{2g}$ ,  $E_g$  (blue dotted lines), and  $T_2$  (green dotted line). The fixed FWHM (full width at half maximum) of GNP<sub>10900</sub> and  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> are as follows. The FWHM values of identical  $T_{2g}$  and  $E_g$  are 2.242 for GNP<sub>10900</sub> and 2.242 for  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>, that of  $T_2$  is 3.052 for GNP<sub>10900</sub> and 2.414 for  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub>. c) List of the obtained parameters of a) and b).



**Figure S8.** a) STEM-EELS spectra of GNP<sub>20000</sub> and the standard samples of FeO and  $\gamma$ -Fe<sub>2</sub>O<sub>3</sub> for references. The spectra of b) O K-edge and c) Fe L2,3-edge.



**Figure S9.** Mössbauer spectra of a)  $GNP_{3666}$  and b,c)  $GNP_{20000}$  in the temperature range between 300 and 10 K. a) The spectrum of  $GNP_{3666}$  at 10 K contained a paramagnetic (red) and a magnetic (blue) components. b) The spectrum of  $GNP_{20000}$  at 10 K existed only the magnetic component, and the overlaid spectrum of the temperature change of c) suggests that a magnetic transition temperature exists between 120 and 150 K.

|                      |             | Paramagnetic (doublet) |                   |                   |                     | Magnetic (sextet) |                   |              |                         |               |
|----------------------|-------------|------------------------|-------------------|-------------------|---------------------|-------------------|-------------------|--------------|-------------------------|---------------|
| Sample               | Temp<br>(K) | Fraction               | IS<br>(mm/s)      | QS<br>(mm/s)      | LW<br>(mm/s)        | Fraction          | IS<br>(mm/s)      | QS<br>(mm/s) | H <sub>int</sub><br>(T) | LW<br>(mm/s)  |
| GNP <sub>3666</sub>  | 300         | 100%                   | $0.309 \pm 0.014$ | $0.90 \pm 0.02$   | 0.56±0.04           |                   |                   |              |                         |               |
|                      | 10          | 43.8%                  | $0.42 \pm 0.02$   | $1.02 \pm 0.04$   | $0.90 \pm 0.07$     | 56.2%             | $0.42 \pm 0.02$   | 0            | 45.0±1.2                | $2.5 \pm 0.7$ |
| GNP <sub>10900</sub> | 300         | 100%                   | $0.346 \pm 0.009$ | $0.850 \pm 0.015$ | $0.60 \pm 0.02$     |                   |                   |              |                         |               |
|                      | 10          | 14.5%                  | $0.494 \pm 0.017$ | $0.79 \pm 0.04$   | $0.6682 \pm 0.0017$ | 85.5%             | $0.494 \pm 0.017$ | 0            | 40.08 (avg)             | 0.68±0.09     |
| GNP <sub>20000</sub> | 300         | 100%                   | $0.180 \pm 0.008$ | $1.012 \pm 0.013$ | $0.81 \pm 0.02$     |                   |                   |              |                         |               |
|                      | 250         | 100%                   | 0.231±0.005       | $1.038 \pm 0.009$ | $0.779 \pm 0.015$   |                   |                   |              |                         |               |
|                      | 200         | 100%                   | $0.267 \pm 0.007$ | $1.063 \pm 0.011$ | $0.818 \pm 0.018$   |                   |                   |              |                         |               |
|                      | 150         | 100%                   | $0.268 \pm 0.006$ | $1.072 \pm 0.011$ | $0.818 \pm 0.017$   |                   |                   |              |                         |               |
|                      | 10          |                        |                   |                   |                     | 100.0%            | $0.364 \pm 0.007$ | 0            | 44.4 (avg)              | 0.64±0.04     |

Table S2. Obtained parameters of <sup>57</sup>Fe Mössbauer spectra measured for GNP<sub>3666</sub>, GNP<sub>10900</sub>, and GNP<sub>20000</sub>.



Figure S10. Plots of the saturation magnetization ( $M_s$ ) and coercivity ( $H_c$ ) of the GNP<sub>nn</sub> series against the Fe loading weight (wt%).



**Figure S11.** Temperature dependent magnetization of a) GNP<sub>3666</sub>, b) GNP<sub>7494</sub>, c) GNP<sub>10900</sub>, d) GNP<sub>18409</sub> and d) GNP<sub>20000</sub>. The red filled circle and green filled square denote field-cooled (FCM) and zero-field-cooled (ZFCM) magnetization, respectively.



**Figure S12.** a) Molecular structure of a fourth generation dendritic phenylazomethine template (DPA G4). b) A HAADF-STEM image of  $\text{GNP}_{\text{Fe60}}$  (Particle size = 1.4 nm). c) XPS spectrum of  $\text{GNP}_{\text{Fe60}}$ . d) Magnetization curves of  $\text{GNP}_{\text{Fe60}}$  (blue: 0.41  $\mu_{\text{B}}$ ) and  $\text{GNP}_{3666}$  (red: 0.73  $\mu_{\text{B}}$ ) measured at 1.9 K.