Supporting Information

NH_2 -MIL-88B (Fe_{α}In_{1- α}) mixed-MOFs designed for enhancing photocatalytic Cr (VI) reduction and tetracycline elimination

Chunhua Xu, *a Mingjun Bao, ^b Jiawen Ren, ^b and Zhiguang Zhang *^b

^a Dalian Vocational & Technical College (Dalian Radio and TV University), 116035

Dalian, PR China

^b School of Chemistry and Chemical Engineering, Liaoning Normal University, 116029 Dalian, PR China

^{*} Corresponding author.

E-mail: xuchunhua0331@163.com (C. Xu), zgzhang@lnnu.edu.cn (Z. Zhang)

Chemicals

2-aminoterephthalic acid (NH₂-BDC), iron nitrate nonahydrate (Fe $(NO_3)_3 \cdot 9H_2O)$, indium nitrate hydrate (In $(NO_3)_3 \cdot xH_2O)$, tetracycline hydrochloride (TC-HCl), potassium dichromate (K₂Cr₂O₇), diphenylcarbazide (DPC), N,N-dimethylformamide (DMF), acetonitrile (CNCH₃), and methanol (CH₃OH), hydrochloric acid (HCl) were supplied by Sinopharm Chemical Reagents Limited Company and used as original form without further purification.

Characterization

The X-ray diffraction (XRD, Germany) was recorded with a LabX-6000 X-ray diffractometer. The infrared spectra were obtained by Nicolets50 Fourier transform infrared spectrometer (FT-IR, America). The morphology and microstructures of samples were analyzed via the scanning electron microscope (SEM, S-4800, Japan) with an energy-dispersive X-ray (EDX) spectrometer. The transmission electron microscopy (TEM) and the high-resolution TEM (HR-TEM) were characterized with a JEM2100 transmission electron microscopy (TEM, JEOL) operated at 200 kV. The X-ray photoelectron spectroscopy measurements were investigated, using an ESCALAB250 X-ray electron spectrometer with Al Ka (1486.6 eV) and Mg Ka (1253.6 eV) (XPS, America). The UV-vis absorption spectra of samples were recorded by the Lambda35 UV-visible spectrophotometer (DRS, America). The N₂ adsorption-desorption isotherm and Brunauer-Emmett-Teller (BET, America) method were used to test the porous nature and surface area with Autosorb-IQ-XR. The photocatalytic experiments were carried out under 300 W Xe lamps (Xenon light source, CEL-HXF300, Beijing China Education Au-light Co., Ltd) with a cutoff filter 420nm. of

S3

Samples	n _(Fe) :n _(In)
NH ₂ -MIL-88B	_
NH ₂ -MIL-88B (Fe _{0.8} In _{0.2})	8.5:1.5
NH ₂ -MIL-88B (Fe _{0.6} In _{0.4})	6.3:3.7
NH ₂ -MIL-88B (Fe _{0.4} In _{0.6})	4.7:5.3
NH ₂ -MIL-88B (Fe _{0.2} In _{0.8})	2.6:7.4

Tab. S1. Doped amounts of In on NH₂-MIL-88B (Fe) by the ICP-AES analysis.

Samples	Surface area $(m^2 g^{-1})$
NH ₂ -MIL-88B (Fe)	366
NH ₂ -MIL-88B (Fe _{0.6} In _{0.4})	162

Tab. S2. Surface areas of NH₂-MIL-88B (Fe) and NH₂-MIL-88B (Fe $_{0.6}In_{0.4}$) samples

Elt.	EDX At%	XPS At. %
С	45.16	66.95
Ν	5.56	5.44
О	42.14	23.77
Fe	4.28	2.39
In	2.86	1.45

Tab. S3. Comparison with the atomic percentage of C, N, In, O, and Fe of NH_2 -MIL-88B (Fe₀ (In₀) between EDX and XPS

Samples	k/min ⁻¹	P ²
Samples	K/ 11111	IX
NH_2 -MIL-88B (Fe _{0.6} In _{0.4})	0.0138	0.978
NH ₂ -MIL-88B (Fe)	0.0035	0.961

Tab. S4. Reaction rate constants (k) and the correlation coefficient value (R²) of Cr (VI) photocatalytic reduction under the different catalysts

photocatalytic reduction under the NH_2 - NHL - SOD ($T_{\alpha}IH_{1-\alpha}$)		
Samples	k/ min ⁻¹	R ²
NH ₂ -MIL-88B (Fe _{0.8} In _{0.2})	0.0075	0.999
NH ₂ -MIL-88B (Fe _{0.6} In _{0.4})	0.0138	0.978
NH ₂ -MIL-88B (Fe _{0.4} In _{0.6})	0.0094	0.989
NH ₂ -MIL-88B (Fe _{0.2} In _{0.8})	0.0087	0.993

Tab. S5. Reaction rate constants (k) and the correlation coefficient value (R^2) of Cr (VI) photocatalytic reduction under the NH₂-MIL-88B (Fe_aIn_{1-a})

Samples	k/ min ⁻¹	R ²
NH ₂ -MIL-88B (Fe _{0.6} In _{0.4})	0.0096	0.990
NH ₂ -MIL-88B (Fe)	0.0032	0.990

Tab. S6. Reaction rate constants (k) and the correlation coefficient value (R²) of TC-HCl photocatalytic degradation under the different catalysts

photocatalytic degradation under the $M12-M112-88B$ ($Pc_{\alpha}In_{1-\alpha}$)		
Samples	k/ min ⁻¹	\mathbb{R}^2
NH ₂ -MIL-88B (Fe _{0.8} In _{0.2})	0.0044	0.997
NH ₂ -MIL-88B (Fe _{0.6} In _{0.4})	0.0096	0.990
NH ₂ -MIL-88B (Fe _{0.4} In _{0.6})	0.0069	0.999
NH ₂ -MIL-88B (Fe _{0.2} In _{0.8})	0.0053	0.998

Tab. S7. Reaction rate constants (k) and the correlation coefficient value (R^2) of TC-HCl photocatalytic degradation under the NH₂-MIL-88B (Fe_aIn_{1-a})

Fig. S1. PL spectra of NH_2 -MIL-88B (Fe) and NH_2 -MIL-88B (Fe_{0.6}In_{0.4})