Electronic Supplementary Information

Confinement of Au-N-heterocyclic carbene in $\mathrm{Pd}_{6} \mathrm{~L}_{12}$ metal-organic cage

Lihua Zeng, \ddagger Shujian Sun, \ddagger Zhang-Wen Wei, Yu Xin, Liping Liu and Jianyong Zhang*

MOE Laboratory of Polymeric Composite and Functional Materials, School of Materials
Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275,
China.E-mail: zhjyong@mail.sysu.edu.cn.

Additional experimental section

General methods

All commercial chemicals and solvents were purchased without further purification, unless otherwise specified. ${ }^{1} \mathrm{H}$ NMR, ${ }^{11} \mathrm{~B}$ NMR, ${ }^{19} \mathrm{~F}$ NMR, ${ }^{31} \mathrm{P}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectra were recorded on a Bruker Avance III 400 MHz NMR spectrometer. ${ }^{1} \mathrm{H}$ DOSY spectrum was recorded on a Bruker Avance III 600 MHz NMR spectrometer. ESI-TOF mass spectra were performed on a timsTOF from Bruker equipped with an auto-sample injection system. Detection was in positive-ion mode and the capillary voltage was 3500 V , dry temperature was held at 200 ${ }^{\circ} \mathrm{C}$, dry gas was $4.5 \mathrm{~L} \mathrm{~min}^{-1}$, and Nebulizer was 0.6 bar. For cyclic voltammetry the working electrode was glassy carbon electrode 3 mm in diameter, a platinum wire was counter electrode, and an $\mathrm{Ag} / \mathrm{AgCl}\left(3.0 \mathrm{~mol} \mathrm{~L} \mathrm{~L}^{-1} \mathrm{KCl}\right)$ electrode or Ag wire as reference electrode. All electrochemical experiments were carried out in dry DMSO solutions of $n-\mathrm{Bu}_{4} \mathrm{NPF}_{6}\left(0.10 \mathrm{~mol} \mathrm{~L}^{-1}\right)$ as supporting electrolyte, which was freed of oxygen by bubbling through high-purity nitrogen before experiments. The concentration was $3.0 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ for \mathbf{L} and $0.25 \mu \mathrm{~mol} \mathrm{~L}^{-1}$ for $\mathrm{Pd}_{6} \mathbf{L}_{12}$.

Synthesis of 4-iodo-2,6-diisopropylaniline

Synthesized according to the reported procedure. ${ }^{\text {S1 }}$ 2,6-Diisopropylaniline ($9.399 \mathrm{~g}, 53.1 \mathrm{mmol}$) was dissolved in a mixture of methanol and dichloromethane ($60 \mathrm{~mL}, v / v 1: 1$). Iodochloride $(9.464 \mathrm{~g}, 58.4 \mathrm{mmol}$, excess) dissolved in a mixture of methanol-dichloromethane ($60 \mathrm{~mL}, \mathrm{v} / \mathrm{v}$ 1:1) was added into the solution of 2,6-diisopropylaniline. The resultant mixture was stirred at room temperature for 12 h . At the end of the reaction the solvent was evaporated out. The resulting crude solid product was treated with 60 mL saturated solution of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The resulting mixture was stirred at room temperature for 0.5 h and then extracted with dichloromethane (3×20 $\mathrm{mL})$. After drying over sodium sulfate, the solvent was evaporated out. Brown oil was eventually obtained after distillation under reduced pressure $(15.149 \mathrm{~g}, 94 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.33(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 2 \mathrm{H}), 2.89(\mathrm{~m}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H})$.

b
a

| 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5
 δ / ppm | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fig. S1 ${ }^{1} \mathrm{H}$ NMR spectrum of 4-iodo-2,6-diisopropylaniline ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$).

Synthesis of bis(4-iodo-2,6-diisopropylphenyl)diazabutadiene (a)

Synthesized according to the reported procedure. ${ }^{\text {S1 }}$ Glyoxal ($5.257 \mathrm{~g}, 40 \mathrm{wt} \%$ in water, 36.3 mmol) was added dropwise into 4-iodo-2,6-diisopropylaniline ($21.969 \mathrm{~g}, 72.5 \mathrm{mmol}$) in methanol (36 mL), $362 \mu \mathrm{~L}$ acetic acid was added in the system as catalyst. The reaction mixture was stirred for 7 h at $50^{\circ} \mathrm{C}$. The yellow solid was achieved by filtration and washed with methanol (3×10 mL), leading to the yellow product ($13.939 \mathrm{~g}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~s}, 2 \mathrm{H})$, $7.49(\mathrm{~s}, 4 \mathrm{H}), 2.86(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 24 \mathrm{H})$.

c

| 0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0. |
| :--- |

Fig. S2 ${ }^{1} \mathrm{H}$ NMR spectrum of bis (4-iodo-2,6-diisopropylphenyl)diazabutadiene (400 MHz, DMSO- d_{6}).

Synthesis of N, N^{\prime}-1,3-bis(4-iodo-2,6-diisopropylphenyl)imidazolium chloride (b)

a

b

A 250 mL round-bottom flask equipped with a magnetic stirring bar and a stopper was charged with ethyl acetate $(100 \mathrm{~mL})$ and heated in an oil bath at $70^{\circ} \mathrm{C}$. To the warm solvent bis(4-iodo-2,6-diisopropylphenyl)diazabutadiene $(6.910 \mathrm{~g}, 11 \mathrm{mmol})$ and paraformaldehyde $(0.360 \mathrm{~g}, 12$ mmol, excess) were added. Next, a solution of chlorotrimethylsilane (1.5 mL) in ethyl acetate (2.5 mL) was added dropwise over 45 min with vigorous stirring. The resulting yellow-orange suspension was further stirred for 4 h at $70^{\circ} \mathrm{C}$. The color turned to black-brown. The suspension was filtered through a funnel and the white precipitate was rinsed twice with ethyl acetate (3×10 $\mathrm{mL})$ to obtain the product ($7.264 \mathrm{~g}, 62 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 10.34(\mathrm{~s}, 1 \mathrm{H}), 8.58$ $(\mathrm{s}, 2 \mathrm{H}), 7.87(\mathrm{~s}, 4 \mathrm{H}), 2.26(\mathrm{~m}, 4 \mathrm{H}), 1.24(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}): $\delta 147.54$ (s), 139.60 (s), 133.99 (s), 130.24 (s), 126.60 (s), 99.99 (s), 29.05
(s), 24.24 (s), 23.22 (s). FT-IR ($\left.\mathrm{cm}^{-1}, \mathrm{KBr}\right): 1623$ (w) (C=N), 1568 (m), 1532 (m), 1464 (m), 1328 (m), 1205 (s), 1107 (w), 949 (s), 862 (s), 787 (w), 769 (w), 686 (w), 565 (w). TOF-MS (ESI+): m / z found (calcd.) for $[\mathrm{M}-\mathrm{Cl}]^{+}\left[\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{I}_{2}\right]^{+}=641.0879$ (641.0884).

Fig. S3 ${ }^{1} \mathrm{H}$ NMR spectrum of 1,3-bis(4-iodo-2,6-diisopropylphenyl)imidazolium chloride (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.


```
e
```


Fig. S4 ${ }^{13} \mathrm{C}$ NMR spectrum of 1,3-bis(4-iodo-2,6-diisopropylphenyl)imidazolium chloride (100 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$.

Fig. S5 ESI-MS spectrum of1,3-bis(4-iodo-2,6-diisopropylphenyl)imidazolium chloride in $\mathrm{CH}_{3} \mathrm{CN}$, and isotopic distribution and simulation of $[\mathrm{M}-\mathrm{Cl}]^{+}\left[\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{I}_{2}\right]^{+}$.

Synthesis of (1,3-bis(4-iodo-2,6-diisopropylphenyl)-1H-imidazol-2(3H)-ylidene)gold(I) chloride (c)

Synthesized according to modified literature method. ${ }^{\mathrm{S} 2}$ Compound $\mathbf{b}(2.57 \mathrm{mmol}, 1.737 \mathrm{~g})$, $\mathrm{Na}_{2} \mathrm{CO}_{3}(25.7 \mathrm{mmol}, 2.724 \mathrm{~g})$ and $\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}(2.57 \mathrm{mmol}, 1.058 \mathrm{~g})$ were added to a dry Schlenk vial equipped with a magnetic stirring bar under argon atmosphere. Then 3chloropyridine ($12.26 \mathrm{~g}, 108 \mathrm{mmol}$) was added dropwise, and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h . After completion of reaction, the solution was cooled to room temperature and 250 mL dichloromethane was added to dissolve the product, then the mixture was filtered through celite. The combined organic phase was evaporated to dryness under reduced pressure. The residue was washed with MeOH and dried under vacuum to give \mathbf{c} as light yellow solid (1.424 g , $63 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62(\mathrm{~s}, 4 \mathrm{H}), 7.17(\mathrm{~s}, 2 \mathrm{H}), 2.47(\mathrm{p}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.34(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 12 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H})$. TOF-MS (ESI+$): m / z$ found (calcd.) for $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{AuClN}_{2} \mathrm{I}_{2} \mathrm{Na}\right]^{+}=895.0048$ (895.0058).

Fig. $\mathbf{S 6}^{1} \mathrm{H}$ NMR spectrum of \mathbf{c} in $\mathrm{CDCl}_{3}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Fig. S7 ESI-MS spectrum of \mathbf{c} in $\mathrm{CH}_{3} \mathrm{OH}$, and isotopic distribution and simulation of $[\mathrm{M}+\mathrm{Na}]^{+}$ $\left[\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{AuClN}_{2} \mathrm{I}_{2} \mathrm{Na}\right]^{+}$.

Fig. S8 ${ }^{1} \mathrm{H}$ NMR spectrum of \mathbf{L} in $\mathrm{DMSO}-d_{6}(400 \mathrm{MHz}, 293 \mathrm{~K})$.

Fig. S9 ${ }^{13} \mathrm{C}$ NMR spectrum of \mathbf{L} in $\mathrm{CDCl}_{3}(100 \mathrm{MHz}, 298 \mathrm{~K})$.

Fig. S10 Q-TOF-MS spectrum of \mathbf{L} in MeCN , and isotopic distribution and simulation of $[\mathrm{M}+\mathrm{H}]^{+}$ $\left[\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{AuI}+\mathrm{H}\right]^{+}$found (calcd.) for 867.2206 (867.2198) and $[\mathrm{M}-\mathrm{AuI}+\mathrm{H}]^{+}\left[\mathrm{C}_{41} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$ found (calcd.) for 543.3471 (543.3488).

References

S1 H. Yang, G. Li, Z. Ma, J. Chao and Z. Guo, J. Catal., 2010, 276, 123-133.
S2 W. Wang, A. Zheng, P. Zhao, C. Xia and F. Li, ACS Catal., 2014, 4, 321-327.

Fig. S11 VT ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Pd}_{6} \mathbf{L}_{12}$ in CDCl_{3}-DMSO- d_{6} solvent mixture ($\left.v / v 1: 1\right)(400 \mathrm{MHz})$.

Fig. S12 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO- $d_{6}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Fig. S13 ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum of $\mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO- $d_{6}(500 \mathrm{MHz}, 298 \mathrm{~K})$.

Fig. $\mathbf{S 1 4}{ }^{1} \mathrm{H}$ DOSY spectrum of $\mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO- $d_{6}(500 \mathrm{MHz}, 298 \mathrm{~K})$. The diffusion coefficient is $5.75 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}$, the dynamic diameter is $19.0 \AA$. Stokes-Einstein equation: $D=\frac{k_{b} T}{6 \pi \eta r_{\text {was }}}$ applied to estimate the dynamic radius, with D is diffusion values ($5.75 \times 10^{-11} \mathrm{~m}^{2} \mathrm{~s}^{-1}$) obtained from DOSY spectrum, k_{b} is Boltzmann constant $\left(1.38 \times 10^{-23} \mathrm{~N} \mathrm{~m} \mathrm{~K}^{-1}\right), T$ is absolute temperature
(298 K), η is dynamic viscosity of DMSO- $d_{6}, 1.996 \mathrm{mPa} \mathrm{s}^{-1}$, and r is the estimated dynamic radius. According to the Stokes-Einstein equation, it could be calculated that the molecular radius of $\mathrm{Pd}_{6} \mathbf{L}_{12}$ was $19.0 \AA$.

Fig. S15 FT-IR spectra of a) \mathbf{L} and b) $\operatorname{Pd}_{6} \mathbf{L}_{12}$.

Fig. S16 (a) Cyclic voltammograms of $0.25 \mu \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO at scan rates of 50, 75, 100, $125,150,175$ and $200 \mathrm{mV} \mathrm{s}^{-1}$, and (b) plot of the reduction current versus the square root of the scan rate ($v^{1 / 2}$).

Fig. $\mathbf{S 1 7}{ }^{31} \mathrm{P}$ NMR spectra of $\mathrm{PF}_{6} @ \mathrm{Cd}_{6} \mathbf{L}_{12}$ (top) and NaPF_{6} (down) in DMSO- $d_{6}(162 \mathrm{MHz}, 298$ K).

$$
\mathrm{PF}_{6} @ \mathrm{Pd}_{6} \mathrm{~L}_{12}
$$

$$
\mathrm{NaPF}_{6}
$$

Fig. S18 ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathrm{PF}_{6} @ \mathrm{Pd}_{6} \mathbf{L}_{12}$ (top) and NaPF_{6} (down) in DMSO- d_{6} ($376 \mathrm{MHz}, 298$ K).

Fig. S19 ${ }^{1} \mathrm{H}$ NMR spectra of (a) $\mathrm{Pd}_{6} \mathbf{L}_{12}$, (b) $\mathrm{PF}_{6} @ \mathrm{Pd}_{6} \mathbf{L}_{12}$, (c) $\mathrm{BF}_{4} @ \mathrm{Pd}_{6} \mathbf{L}_{12}$, (d) OTf $@ \mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO- $d_{6}(400 \mathrm{MHz}, 298 \mathrm{~K})$.

Fig. S20 ${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathrm{BF}_{4} @ \mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO- $d_{6}(376 \mathrm{MHz}, 298 \mathrm{~K})$.

$$
\begin{aligned}
& \mathrm{BF}_{4} @ \mathrm{Pd}_{6} \mathrm{~L}_{12} \\
& \mathrm{KBF}_{4}
\end{aligned}
$$

Fig. S21 ${ }^{19} \mathrm{~F}$ NMR spectra of $\mathrm{BF}_{4} @ \mathrm{Pd}_{6} \mathbf{L}_{12}$ (top) and KBF_{4} (down) in DMSO- $d_{6}(376 \mathrm{MHz}, 298$ $\mathrm{K})$.

Fig. S22 ${ }^{11} \mathrm{~B}$ NMR spectrum of $\mathrm{BF}_{4} @ \mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO- $d_{6}(128 \mathrm{MHz}, 298 \mathrm{~K})$.

```
BF
```

KBF_{4}

| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 -1 -2 -3 -4 -5
 $\delta / p p m$ | -6 | -7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Fig. S23 ${ }^{11}$ B NMR spectra of $\mathrm{BF}_{4} @ \mathrm{Pd}_{6} \mathbf{L}_{12}($ top $)$ and KBF_{4} (down) in DMSO- $d_{6}(128 \mathrm{MHz}, 298$ $K)$.

OTf@ $\mathrm{Pd}_{6} \mathrm{~L}_{12}$

Fig. S24 ${ }^{19} \mathrm{~F}$ NMR spectrum of OTf $@ \mathrm{Pd}_{6} \mathbf{L}_{12}$ in DMSO- $d_{6}(376 \mathrm{MHz}, 298 \mathrm{~K})$.

Table S1 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for $\operatorname{Pd}_{6} \mathbf{L}_{12}$.

$\mathrm{Au}(1)-\mathrm{I}(1)$	$2.488(4)$	$\mathrm{Pd}(1)-\mathrm{N}(4)$	$1.981(12)$
$\mathrm{Au}(1)-\mathrm{C}(18)$	$1.979(15)$	$\mathrm{Pd}(1)-\mathrm{N}(1)^{1}$	$1.99(2)$
$\mathrm{Au}(2)-\mathrm{I}(2)$	$2.514(3)$	$\mathrm{Pd}(1)-\mathrm{N}(5)$	$2.023(19)$
$\mathrm{Au}(2)-\mathrm{C}(55)$	$1.966(14)$	$\mathrm{Pd}(1)-\mathrm{N}(8)^{2}$	$1.96(12)$
$\mathrm{C}(18)-\mathrm{Au}(1)-\mathrm{I}(1)$	$176.3(6)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{N}(1)^{1}$	
$\mathrm{C}(55)-\mathrm{Au}(2)-\mathrm{I}(2)$	$179.4(5)$	$\mathrm{N}(4)-\mathrm{Pd}(1)-\mathrm{N}(5)$	$86.8(8)$
$\mathrm{C}(36)-\mathrm{N}(4)-\mathrm{Pd}(1)$	$119.7(9)$	$\mathrm{N}(1)^{1}-\mathrm{Pd}(1)-\mathrm{N}(5)$	$176.8(7)$
$\mathrm{C}(37)-\mathrm{N}(4)-\mathrm{Pd}(1)$	$119.9(9)$	$\mathrm{N}(8)^{2}-\operatorname{Pd}(1)-\mathrm{N}(4)$	$90.9(9)$
$\mathrm{C}(7 \mathrm{BA})-\mathrm{N}(1)-\mathrm{Pd}(1)^{3}$	$118.5(15)$	$\mathrm{N}(8)^{2}-\operatorname{Pd}(1)-\mathrm{N}(1)^{1}$	$90(6)$
$\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{Pd}(1)^{3}$	$119.9(16)$	$\mathrm{N}(8)^{2}-\operatorname{Pd}(1)-\mathrm{N}(5)$	$176(5)$
${ }^{1} x-y+1 / 3, x-1 / 3,-z+2 / 3 ;{ }^{2}-x+y+1,-x+1, z ;^{3} y+1 / 3,-x+y+2 / 3,-z+2 / 3 ;{ }^{4}-y$			
$+1, x-y, z$.		$93(6)$	

