Electronic Supplementary Information

Characterization of organophosphatic brachiopod shells: spectroscopic assessment of collagen matrix and biomineral components[†]

Oluwatoosin B. A. Agbaje,^{*a-c} Simon C. George,^b Zhifei Zhang,^d Glenn A. Brock,^{c,d} Lars E. Holmer^{a,d}

^a Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Uppsala, Sweden

^b Department of Earth and Environmental Sciences and MQ Marine Research Centre, Macquarie University, Sydney, Australia.

^c Department of Biological Sciences, Macquarie University, Sydney, Australia.

^d State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments, Department of Geology, Northwest University, Xi'an, 710069, China.

* Correspondence: toosin.agbaje@mq.edu.au; toosin91014@gmail.com

Type 1 Collagen		Chondroitin		D. tenuis		L. anatina		Assignment/Component	
		sulfate A				(ML/RL)			
Raman	FTIR	Raman	FTIR	Raman	FTIR	Raman	FTIR		
1668				1664				Amide I, β -sheet/3 ₁₀ helix, Collagen	
1657						1654		Amide I, α-helix, GAGs/Collagen	
	1634		1635*		1637		1634/6	Amide I, Triple helix, Collagen/GAGs	
*1616				1616		*1616		Amide I, Collagen	
1604			1606	1606		1604		Amide I	
1584				1585		1585*		vC=C ring of phenylalanine	
		1572						GAGs	
1555	1544		1566*	1557	1538	1543*	1538/44	Amide II	
1451	1450	1448*		1451	1455	1452	1454/47	wCH ₂ /δasCH ₃ /Phospholipids	
1423					1417	1422		vCOO-	
1398	1401	1414	1411				1403/1395		
		1375	1375	1384*	1380	1379w		v _s CH ₃ of GAGs	
1336/43	1337	1341		1337	1338	1336	1337/8	Amide III, α-helix, Collagen/GAGs	
1317	1317	1316*	1310	1319	1318	1313	1317/5	Amide III, α-helix	
	1281	1277		1289w	1282	1286	1282	Amide III, α-helix	
1265		1267*		1265		1264		Amide III, α-helix, Collagen/GAGs	
1245	1235	1237*		1242	1237	1238/42	1236	Amide III, β -sheet and/or random coils,	
			1226/55					Sulfate asymmetric stretching of GAGS	
1208		1201w		1205		1206/7		vC-C of tryptophan and phenylalaline	
	1202				1202		1203	wCH ₂ from Collagen	
1165/74				1172		1174		vC-O-C, Collagen	
	1161	1151*	1155	1157	1156	1155	1158/60	vC-O-C of polysaccharide (GAGs)	
1125		1138	1123	1126		1134	1125/6	vC-C of collagen/C-O-S of GAGs	
								overlaps with the HPO ₄ ²⁻	
1097		1090		1104	1108*	1107	1116	$v_1 \text{CO}_3^2$; A-type	
1086*	1080			1084		1086*	1080	vC-O in collagen and GAGs overlaps	
								with $v_3 PO_4^{3-}$	
1078*				1077*		1072/4		$v_1 \text{CO}_3^2$; B-type	
1067	1061	1069	1062*	1064*	1065*		1069*/4	<i>v</i> C-C-O of carbohydrate in collagen and	
								GAGs overlaps with lipids	
		1055				1053		GAGs overlap with $v_3 PO_4^{3-}$	
1046				1040		1040		vC-O of carbohydrate in collagen and	
								GAGs/v ₃ PO ₄ ³⁻	
1031	1031		1027	1032	1025	1032	1035/6	<i>v</i> C-O of protein; v_3 PO ₄ ³⁻ overlaps with	
								proline vC-C	
		1019		1012*		1011*		GAGs overlap with HPO ₄ ²⁻	
1003				1004		1002/3		vC-C of phenylalanine (Collagen)	
965	971	978	985*	964	952	964/5	968/71	$v_{\rm as} PO_4^{3-}$ (hydroxyapatite); $vC-O-S$	
				942	944*	942	943/4	vC-C backbone of collagen	
939	937	939	937*	939		936		vC-O-C backbone of collagen/GAGs	
920	922		924	921				vC-O-C backbone of collagen/GAGs	
						905		vC^{α} -C, vC -N, rCH_3	
		885	891*	887			895/7	δC-H for anomers (GAGs)	
874	875			877	870	872/3	875/3	<i>v</i> C-C of hydroxyproline	
853	852	855	855	855	856*	852/3	1	vC-C of proline (Collagen)/GAGs	
				827/33			1	vC-COO ⁻ of tyrosine (Collagen)	
815	815			818	810*	814	814/9	vC-O-C collagen crosslink	
785		783	793*	778	1	786/76		v(C-C)/pyrimidine ring breathing	
759		760		758	1	758/60		δC -COO ⁻ / $v_4 CO_3^{2-}$; B-type	
		722	726	714,	1	730,		$v_1 CO_3^{2-}$; B-type	
				701		704		$v_1 CO_3^{2-}$; B-type	
		693		671	1	679/7		v ₄ CO ₃ ²⁻	
		642	655	642	1	643		<i>t</i> C-C, <i>w</i> COO ⁻ of Collagen/GAGs	

SI Table 1a. Wavenumber from Raman and FTIR spectra of type I collagen and hydrogen peroxide-treated brachiopod shells.

621		621	619	<i>t</i> C-C Collagen
		602	607	$v_4 PO_4^{3-}$
590*	590	591	591, 580	$v_4 PO_4^{3-}$ overlaps with GAGs
		579		
563	547		556	v(S-S) in collagen/GAGs
534		536	527	<i>v</i> (S-S) in collagen
476	461/92	476	470	v(S-S) in collagen/GAGs
		450	450/4	$v_2 PO_4^{3-}$
	439	431	431	$v_2 PO_4^{3-}$ overlaps with GAGs
	410			GAGs

Notes: modern/living (ML) and recent (RL) *Lingula anatina* shells. Chondroitin sulfate A represents sulphated glycosaminoglycan

α-chitin		Chitosan		Assignment		
Raman	FTIR	Raman	FTIR			
1655	1656	1657	1651	Amide I, α-helix		
1617	1621	1598	1590	Amide I, $vC=O$		
	1553		1562	Amide II		
1447		1460		CH ₂ , CH ₃		
	1428		1422	CH ₂		
1413	1415	1410		vsCOO ⁻		
1376	1376	1374	1376	r C-CH ₂ , δ C-CH ₃		
1327		1323	1315	Amide III, <i>v</i> CH ₃		
	1308			Amide III, CH ₂ w,		
1265	1260	1263	1260	Amide III, v C-H, δ N-H, δ C=O		
	1234	1225	1235	Amide III, N-H ib, C-N s		
1202	1204	1202	1202	Amide III, C-O-H d		
1147	1154	1146	1151	vC-O-C		
1111/04	1113	1111		vC-O-C, ring		
	1068	1087		vC-O-H		
1057			1061	vC-O, vC-C, ring		
1031	1024	1036	1027	δ C-O-H, vC-O, vC-C skeletal		
	1010	989	996	δС-О-Н, νС-О		
971*				δCH_3 , vC-O		
953	952	942	951	$\delta CH_3, \delta C-O-H$		
915	919			CH ₃		
895	895	895	895	δCH_x , C-O-C glycosidic bond		
				С-С, С-О, С-Н		
				C-C, C-O, C-H		
	746			CH ₂		
710	701	707		С-О, С-Н, N-Н		
	692			С-О, С-Н, N-Н		
648	634		660/7	С-С, С-О, С-Н		
598				С-С, С-О, С-Н,		
5.62		670		PO_4^{3-} s		
503		570		C-C, O-H		
330 406		105/79		C-C skeletal backbone		
490		493/78		C-C Skeletal DackDolle		
+30/3		441		C-C-C ring		
	L	74U				

SI Table 1b. Raman and FTIR band assignment for pure α -chitin and chitin (organic) fibre

Sample			
	FTIR	Area	Assignment
		%	
Type 1			β-turn
Collagen (TC)			
	1692	4	β-turn
			•
	1661	51	B-sheet 310 helix
	1651	12	a-helix
	1644	12	Unordered
	1636	6	3 ₁₀₋ heliy
	1620	22	
	1616	23	Side choin Tymosing
	1010		side chain, Tyrosine
			and tryptopnan
Decent D			Ω 412.000
Recent D.			ß-turn
tenuis (D1)	1.000	2	
	1692	3	β-turn
	16/8	13	β-sheet
			β-sheet
	1660	34	β -sheet, 3_{10} -helix
	1650/	2	α-helix
	8		
	1643	22	Unordered
	1631	26	3 ₁₀ -helix
			β-sheet
			β -sheet; Side chain
	1616		Side chain, Tyrosine
			and tryptophan
	1603		Side chain, tyrosine
	1595		Side chain,
			Phenylalanine
Modern L.			
anatina (ML)			
			β-turn
	1692	2	β-turn
	1680	7	
	1662	23	β-sheet, 3 ₁₀ -helix
	1652	29	α-helix
	1002		Unordered
<u> </u>	1635	32	310-helix
<u> </u>	1626	7	B-sheet
	1616	,	Side chain Tyrosine
	1010		and tryptophan
	1602		Sido choin tyrosinate
	1005		Side cham, tyrosmate

SI Table 2. Assignment of amide I peak positions and percentage areas to secondary structure.

	1591		Side chain,
			Phenylalanine
Recent L.			β-turn
anatina (RL)			
	1689	6	β-turn
			β-turn
	1660	54	β -sheet, 3 ₁₀ -helix
	1652	6	α-helix
	1640/	5	Unordered
	6		
	1631	29	3 ₁₀ -helix
			β-sheet
	1615		Side chain, Tyrosine
			and tryptophan
	1600		Side chain, tyrosinate
	1591		Side chain,
			Phenylalanine

Notes: ML = modern, RL = recent.

D. tenuis		L. anatina (ML)		L. anatina (RL)		Component
Shift	FWHM	Shift	FWHM	Shift	FWHM	
948	7	949	8	950	14	ACP [1]
955	8	955	7	955	8	OCP [1, 2]
958	2			959	3	CAP [2, 3]
964	11	964	10	965	11	HAP [2, 3]
973	7	971	12	975	10	TCP [1, 3]
~980	5					DCPD [3]

SI Table 3. A. Raman spectra (cm⁻¹) peak position of the phosphate group in brachiopod shells.

Notes: ML = modern, RL = recent, FWHM = full width measured at half maximum intensity, ACP = amorphous calcium phosphate, OCP = octacalcium phosphate, CAP = carbonated hydroxyapatite, HAP = hydroxyapatite, TCP = tricalcium phosphate, DCPD = Dicalcium phosphate dihydrate.

SI Table 4. Collagen crosslinks 1660/1690 ratio of type I collagen and brachiopod shells.

	Type I collagen	D. tenuis	L. anatina (ML)	L. anatina (RL)
Collagen cross-	13.0±0.53	11.5±0.47	11.0±0.42	9.9±0.39
links				

SI Figure 1. *Lingula anatina* and *Discinisca tenuis* showing the interior part of the shells. The white dashed line in *Lingula anatina* and the black dashed region in *Discinisca tenuis* indicate part of the shell that was exempted from vibrational spectroscopy analyses and SEM imaging. Black dashed line in *Lingula anatina* denotes the region that was measured for microRaman and Fourier Transform Infrared.

SI Figure 2: Raman spectra of type I collagen (TC) and shells of brachiopods (DT, ML and RL) in the 900–990 cm⁻¹ region. The Raman data were deconvoluted by a Gaussian fit. See text for the interpretation of the peaks. DT, ML and RL represent *Discinisca tenuis*, recent *Lingula anatina* and modern/living *Lingula anatina*, respectively.

SI Figure 3: Raman spectra of brachiopods shells in the 980–1200 cm⁻¹ region.

SI Figure 4. Curve-fitting of FTIR spectrum of Chondroitin sulphate A (CSA; glycosaminoglycan) in the 1200-900 cm⁻¹ region. See **Table 2** for peak assignments.

SI Figure 5: Curve-fitting of FTIR spectra of amide I in the 1720–1580 cm⁻¹ region. TC, DT, ML and RL represent type I collagen, *Discinisca tenuis*, recent *Lingula anatina* and modern/living *Lingula anatina*, respectively.

References

1 N. J. Crane, V. Popescu, M. D. Morris, P. Steenhuis, M. A. Ignelzi Jr, Bone, 2006, 39(3) 434-442.

2 J. Freeman, B. Wopenka, M. Silva, J. Pasteris, Calcif. Tissue Int. 2001, 1, 68(3).

3 S. Koutsopoulos, J. Biomed. Mater. Res. A, 2002, 62 600-612.