Melamine-based Functionalized Graphene Oxide and Zirconium Phosphate for High Performance Removal of Mercury and Lead Ions from Water

Ayyob M. Bakry^{†‡}, Fathi S. Awad^{†§}, Julian A. Bobb[†], Amr A. Ibrahim^{†§}, and M. Samy El-Shall^{†*}

[†]Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA [‡]Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia [§]Chemistry Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt

Supporting Information

Figure S1. XRD patterns of Graphite, GO, and MT-PRGO.

Figure S2. ¹H NMR spectra of (a) melamine and (b) melamine thiourea (MT).

Figure S3 (a) UV-Vis and (b) Raman spectra of GO and MT-PRGO.

Figure S4. (a & b) XPS survey spectra, (c & d) C 1s of GO and MT-PRGO.

Figure S5. XPS spectra of (a & b) O 1s for GO and MT-PRGO, (c) N 1s, and (d) S 2p of MT-PRGO.

Figure S6. The effect of pH on the removal of Hg(II), Co(II), and Cu(II) ions by the MT-PRGO adsorbent [conditions: $C_0 = (100, 50, 25 \text{ mg/g})$, respectively, T = 298 K; adsorbent dose = 0.005 g/5 mL, t = 6 h].

Figure S7. Langmuir isotherm model for the adsorption of Hg(II), Co(II), and Cu(II) ions on MT-PRGO. (B) Pseudo-second-order kinetic model for the adsorption Hg(II), Co(II), and Cu(II) ions on MT-PRGO.

<u>**Table S1**</u>. Parameters of the Langmuir isotherms model for the adsorption of Hg(II), Co(II), and Cu(II) ions on MT-PRGO.

Metal ion	R ²	b (L/mg)	Q _{max} , fitted	Qexp	R _L
Hg(II)	0.997	0.096	661.0	651.0	0.0079
Co(II)	0.995	0.080	98.8	98.0	0.0153
Cu(II)	0.994	0.044	50.1	50.0	0.0537

<u>Table S2</u>. Kinetic parameters for the adsorption of Hg(II), Co(II) and Cu(II) ions on MT-PRGO.

Metal ion	$q_{e}, e_{xp} (mg g^{-1})$	$q_{e, calc} (mg g^{-1})$	k ₂ (g mol ⁻¹ min ⁻¹)	R ²
Hg(II)	538.0	543.2	0.001218	0.997
Co(II)	48.8	51.3	0.004029	0.998
Cu(II)	40.1	39.5	0.002211	0.993

Figure S8. The effect of competitive ions on the removal of a mixture of toxic metals by MT-PRGO (a) $C_0 = 500 \ \mu g/L$, (b) $C_0 = 200 \ mg/L$ [conditions: adsorbent dose = 0.05 g/ 5 mL, pH = 5.5, T = 298 K].

Table S3. Adsorption capacities of MT-PRGO in mixed metal ions system 500 ppb and 200 ppm at pH 5.5.

Concentration	Metal ion	Hg(II)	Cd(II)	Co(II)	Cu(II)	Zn(II)	Ni(II)
500 μg/L	$C_e(mg/L)$	0	0	0	0	0	0
	$q_e(\mu g/g)$	500.0	500.0	500.0	500.0	500.0	500.0
200 mg/L	$C_e(mg/L)$	59.0	120.0	155.0	179.0	189.0	193.3
	$q_e (mg/g)$	141.0	80.0	40.0	21.0	11.0	6.7

Figure S9. Recycling of MT-PRGO for the removal of Hg(II) [desorption condition: 1.0 M HNO_3 , adsorption conditions: pH 5.5, dose: 1 g/L, initial concentration of Hg (II) = 250 mg/L].

<u>Table 54.</u> Description studies of fig(ii) noin with theory using theory	<u>Table S4</u> .	Desorption	studies of	of Hg(II)	from	MT-PRGO	using	HNO ₃
--	-------------------	------------	------------	-----------	------	---------	-------	------------------

Metal	Eluent	q _e Adsorbed (mg/g)	q _e Desorbed (mg/g)	De (%)
250	HNO ₃ (0.5 M)	232.0	135.5	58.40
250 mg/I	HNO ₃ (1.0 M)	232.0	155.2	66.89
mg/L Hg(II)	HNO ₃ (1.5 M)	232.0	221.2	95.34
IIg(II)	HNO ₃ (2.0 M)	232.0	232.0	100.00

Figure S10. XPS spectra of MP (a) Survey scan, (b) C 1s, (c). N 1s, (d) P 2p, and (e) O 1s.

Figure S11. XPS spectra of ZrP (a) Survey scan, (b) O 1s, (c) P 2p, and (d) Zr 3d.

Adsorbont	Elemental Content (%)						
Ausorbent	C _{1s}	N _{1s}	O _{1s}	P _{2p}	Zr _{3d}		
MP	10.8	24.1	49.3	15.8	0.0		
ZrP	0.0	0.0	57.2	20.3	22.5		
M-ZrP	8.8	22.9	40.9	15.6	11.9		

Table S5. Surface elemental composition of MP and M-ZrP from XPS analysis.

Figure S12. (a) N_2 adsorption-desorption isotherms of MP, ZrP, and M-ZrP. (b) Estimated pore size distributions of ZrP and M-ZrP.

Table S6. BET surface area and estimated pore volume of MP, ZrP and M-ZrP.

Sample	Surface area (m ² /g)	Pore volume (cm ³ /g.Å)
MP	9	-
ZrP	300	0.010
M-ZrP	320	0.008

Figure S13. Dependence of the M-ZrP adsorption capacity of Pb(II), Hg(II), and Cd(II) ions on the pH of the solution [conditions: $C_0 = 50 \text{ mg/L T} = 298 \text{ K}$; adsorbent dose = 0.005 g/5 mL].

Figure S14. (a) Comparison of the removal of Pb(II) by the ZrP and M-ZrP adsorbents [Conditions: $C_0 = 10 - 1500 \text{ mg/L Pb(II)}$, pH 5.5, T = 298 K, adsorbent dose = 0.005 g/5 mL]. (b) Langmuir isotherm model for the adsorption of Pb(II) on ZrP and M-ZrP. The parameters of the Langmuir-isotherms for the adsorption of Pb(II) on ZrP and M-ZrP are shown below.

Langmuir parameters						
Adsorbent	R ²	b (L/mg)	Q _{max} , fitted	Qexp	R _L	
M-ZrP	0.993	0.164	682.6	680.4	0.0041	
ZrP	0.997	0.024	348.3	344.2	0.0400	

Figure S15. Effect of contact time on the removal of Hg(II) and Cd(II) ions by M-ZrP [Conditions: $C_0 = 100 \text{ mg/L}, \text{ pH} = 5.5; \text{ T} = 298 \text{ K};$ adsorbent dose = 0.005 g/5 mL].

Metal	Eluent	q _e Adsorbed (mg/g)	q _e Desorbed (mg/g)	D _e (%)
1000 mg/L Pb(II)	HNO ₃ (0.1 M)	672.0	564.0	83.92
	HNO ₃ (0.5 M)	672.0	584.0	86.90
	HNO ₃ (1.0 M)	672.0	646.0	96.13
	HNO ₃ (1.5 M)	642.0	642.0	100.0
300 mg/L Hg(II)	HNO ₃ (0.1 M)	108.0	78.0	72.22
	HNO ₃ (0.5 M)	108.0	90.0	83.33
	HNO ₃ (1.0 M)	108.0	98.0	90.74
	HNO ₃ (1.5 M)	108.0	108.0	100
300 mg/L Cd(II)	HNO ₃ (0.1 M)	56.0	37.5	66.96
	HNO ₃ (0.5 M)	56.0	44.7	79.82
	HNO ₃ (1.0 M)	56.0	53.0	94.64
	$HNO_3(1.5 M)$	56.0	56.0	100

<u>**Table S7.**</u> Desorption studies of Pb(II), Hg(II) and Cd(II) from M-ZrP using different concentrations of nitric acid.

Figure S16. Recycling of M-ZrP adsorbent for the removal of Pb(II) (desorption condition: 1.5 M HNO₃) [adsorption conditions: pH 5.5, dose = 1 g/L, initial concentration of Pb (II) = 1000 mg/L].

Figure S17. XPS spectra of M-ZrP after the adsorption of Pb(II) ions. (a) Survey scan and high resolution spectra of (b) Pb 4f, (c) C 1s, (d) Zr 3d (e) N 1s, and (f) O 1s electrons.