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Supporting methods

Gel Permeation Chromatography (GPC)

In this set of experiments, 40 mg of pretreated (under different pH) PVA-A and L-S samples were 

dissolved in 10 mL of 0.1 mol/L of NaNO3 solution and filtered using a 0.2 µm nylon filter and 

used for molecular weight analysis. The eluent of the system was 0.1 M sodium nitrate solution 

with a flow rate of 0.7 mL/min in the GPC. The refractometer (RI) and differential pressure (DP) 

detectors were used to determine the molecular weight of the samples. All measurements were 

conducted with respect to standard polyethylene oxide.

Phenolic hydroxyl and carboxylate group analysis

The phenolic hydroxyl and carboxylate group contents were determined according to eq. 1 and eq. 

2, respectively:

(1)
𝑃ℎ𝑒𝑛𝑜𝑙𝑖𝑐 ℎ𝑦𝑑𝑟𝑜𝑥𝑦𝑙 𝑔𝑟𝑜𝑢𝑝 (𝑚𝑚𝑜𝑙/𝑔) =

((𝐸𝑃'
2 ‒  𝐸𝑃'

1) ‒  (𝐸𝑃2 ‒  𝐸𝑃1)) × 𝐶

𝑚

(2)
𝐶𝑎𝑟𝑏𝑜𝑥𝑦𝑙𝑎𝑡𝑒 𝑔𝑟𝑜𝑢𝑝 (𝑚𝑚𝑜𝑙/𝑔) =

((𝐸𝑃'
3 ‒  𝐸𝑃'

2) ‒  (𝐸𝑃3 ‒  𝐸𝑃2)) × 𝐶

𝑚

where C is the concentration of HCl (mol/L) as a titrant, m is the dried weight of the polymer used 

in the analysis. EP′1, EP′2, and EP′3 are the used volumes of HCl solution (mL) at the first, second, 

and third end points when the S-L sample was titrated. EP1, EP2, and EP3 are the consumed 

volumes of HCl solution (mL) at the first, second, and third end points, respectively, when titrating 

the control sample (blank solution).

1H NMR and FTIR spectroscopy

In this experiment, 1 mg of TMSP and 25-40 mg of the samples were dissolved in 500 µL of D2O 

or [D6]DMSO for 12 h at 50 °C in a water bath shaker at 150 rpm.1,2
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The FTIR experiment was carried out by using ~0.1 g of freeze-dried polymer samples. Then, 32 

scans of each sample with a 4 cm-1 resolution and the spectra range of 700 to 4000 cm-1 were 

recorded.

Quartz crystal microbalance with dissipation (QCM-D)

Senses were cleaned by using the following procedure. The gold sensors were cleaned with a 

mixture of 1:1:5 of H2O2 (30%): NH3 (25%): Milli-Q water for 7 min at 60 °C, rinsed with Milli-

Q water and then dried nitrogen gas. The sensors were further cleaned by UV/ozone (digital UV 

ozone system, PSD Series, NOVASCAN) and treated for 10 min. Hereafter, they were rinsed with 

Milli-Q water and dried with nitrogen gas.

The adsorbed wet mass per unit based on the Sauerbrey model is calculated following eq. (3):

 (3)
∆𝑚𝑠𝑎𝑢𝑒𝑟𝑏𝑟𝑒𝑦 =‒

𝐶∆𝑓
𝑛

where Δm and Δf are adsorbed mass and frequency changes, respectively. C is a constant value 

(0.177 mg/m2 Hz for 5 MHz AT-cut quartz crystal sensor), n is the measurement overtone used.

Supporting results

1H NMR spectroscopy 

In Figure S1, the peak at 7.42-5.99 ppm is attributed to the aromatic protons, the peak at 4.5-3.05 

and 3.6-3.2 ppm are ascribed to the methoxy group protons of lignin’s, and methylene protons in 

the β-β structure, respectively. The peaks appearing at 4.7, and 0.0 ppm are assigned to D2O, and 

TMSP (3-trimethylsilyl-(2,2,3,3-D4)-propionic acid sodium salt), respectively.2-4 In Figure S2, the 

peaks at 2.52, and 3.5 ppm are associated with [D6]DMSO and H2O.5
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Figure S1. 1H NMR spectrum of L, and L-S in D2O, at 25 °C.

Figure S2. 1H NMR spectrum PVA-S in [D6]DMSO, at 25 °C.

FTIR Spectroscopy
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Figure S3. FTIR spectra of L, PVA-S, and L-S samples, at 25 °C.

Table S1. Assignment of the adsorption in FTIR spectra.

Entry Band position 

(cm-1)

Assignment References

1 1261 The C-O stretch of guaiacyl unit 2,6,7

2 1140 The C-H stretch of guaiacyl unit 2,7,8

3 3400 O-H stretching absorption in the phenolic and 

aliphatic parts of lignin

6

4 1032 C-O-C bond illustrating the ether linkages between 

the polymer and anionic monomer

6,9

5 1140+-20 The S=O stretch of the sulfonate group 10,11

6 1750-1711 C=O stretch of ester 1,5
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7 3000-2800 C-H stretching vibration of ester 1

Gel permeation chromatography (GPC)

Table S2. PVA-S, and L-S molecular weight analysis by GPC after incubation for 12 h and 

dialysis.

pH PVA-S molecular weight (g/mol) L-S molecular weight (g/mol)

4.0 104,500 111,200

6.7 113,100 114,700

11.0 103,000 114,500

Zeta potential analysis
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Figure S4. The zeta potential analysis of L, L-S, and PVA-S samples under different pH at 25 °C.
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X-ray photoelectron spectroscopy (XPS)

Table S3. Surface composition of the SAM-terminated surfaces.

SAMs name Atomic percentage (at.%)Chemical formula

N C O S

HS(CH2)11OH 11-mercapto-1-undecanol - 82.6 13.1 4.3

HS(CH2)11COOH 12-mercaptododecanoic acid - 78.4 18.5 3.1

HS(CH2)11CH3 1-dodecanethiol - 91.6 3.8 4.6

HS(CH2)6NH2 HCl 6-amino-1-hexanethiol hydrochloride 5.6 78.7 11.1 4.6

80828486889092

Bare Au NH2 COOH CH3
OH

Binding energy (eV)
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Figure S5. XPS high-resolution spectra in the Au4f region for a bare gold (as reference), and 

different terminated SAMs on Au.

Water adsorption at a different temperature on different SAM surfaces 
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Adsorption on -OH-functionalized surface
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Figure S6. Frequency and dissipation changes of the 9th overtone of water adsorption on the -OH-

functionalized surface at different temperatures.

Adsorption on -COOH-functionalized surface
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Figure S7. Frequency and dissipation changes of the 9th overtone of water adsorption on the -

COOH-functionalized surface at different temperatures.
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Adsorption on -CH3-functionalized surface
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Figure S8. Frequency and dissipation changes of the 9th overtone of water adsorption on the -CH3-

functionalized surface at different temperatures.

Adsorption on -NH2-functionalized surface
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Figure S9. Frequency and dissipation changes of the 9th overtone of water adsorption on the -NH2-

functionalized surface at different temperatures.
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Water adsorption at different pH on different SAM surfaces 
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Figure S10. Frequency and dissipation changes of the 9th overtone of water adsorption on the -

OH-functionalized surface at pH.

Adsorption on -COOH-functionalized surface
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Figure S11. Frequency and dissipation changes of the 9th overtone of water adsorption on the -

COOH-functionalized surface at pH.

Adsorption on -CH3-functionalized surface
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Figure S12. Frequency and dissipation changes of the 9th overtone of water adsorption on the -

CH3-functionalized surface at pH.
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Figure S13. Frequency and dissipation changes of the 9th overtone of water adsorption on the -

NH2-functionalized surface at pH.

Effect of temperature on the adsorption of L-S, and PVA-S on SAMs

Adsorption on -OH-functionalized surface
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Figure S14. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -OH-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).
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Figure S15. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -OH-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).

Adsorption on -COOH-functionalized surface
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Figure S16. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -COOH-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).
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Figure S17. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -COOH-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).

Adsorption on -CH3-functionalized surface
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Figure S18. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -CH3-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).
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Figure S19. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -CH3-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).

Adsorption on -NH2-functionalized surface
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Figure S20. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -NH2-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).
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Figure S21. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -NH2-functionalized surface at different temperatures (arrows indicate buffer 

rinsing).

Effect of pH on the adsorption of L-S, and PVA-S on SAMs

Adsorption on -OH-functionalized surface
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Figure S22. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -OH-functionalized surface at different pH (arrows indicate buffer rinsing).
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Figure S23. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -OH-functionalized surface at different pH (arrows indicate buffer rinsing).

Table S4. Contact angle of water-air (θW/A) interfaces of PVA-S, and L-S polymers at different 

pH.

pH PVA-S L-S 

3.0 11°±0.5 38°±0.5
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6.7 12°±1 17°±1

11.0 10°±1 15°±0.5

Adsorption on -COOH-functionalized surface
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Figure S24. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -COOH-functionalized surface at different pH (arrows indicate buffer rinsing).
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Figure S25. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -COOH-functionalized surface at different pH (arrows indicate buffer rinsing).

Adsorption on -CH3-functionalized surface
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Figure S26. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -CH3-functionalized surface at different pH (arrows indicate buffer rinsing).
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Figure S27. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -CH3-functionalized surface at different pH (arrows indicate buffer rinsing).

Adsorption on -NH2-functionalized surface
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Figure S28. a) frequency b) dissipation changes of the 9th overtone of the adsorption of L-S 

polymer on the -NH2-functionalized surface at different pH (arrows indicate buffer rinsing).



27

0 200 400 600 800 1000 1200 1400 1600 1800

-22
-20
-18
-16
-14
-12
-10

-8
-6
-4
-2
0

pH 3.0 pH 6.8 pH 11.0

Time (s)

F 
(H

z)

a) -NH₂

0 200 400 600 800 1000 1200 1400 1600 1800

0

0.4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6
pH 3.0 pH 6.8 pH 11.0

Time (s)

D
×1

0-
6

b) -NH₂

Figure S29. a) frequency b) dissipation changes of the 9th overtone of the adsorption of PVA-S 

polymer on the -NH2-functionalized surface at different pH (arrows indicate buffer rinsing).

Effect of pH on the hydrodynamic radius (Rh) of L-S, and PVA-S 
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Figure S30. Rh as the function of pH for L-S, and PVA-S polymers

Effect of salt concentration on the adsorption of L-S and PVA-S on SAMs
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Figure S31. Frequency changes of L-S on SAMs of different chemistry at different salt 

concentrations of a) 1 mM, b) 10 mM, c) 100 mM, and d) 1000 mM (arrows indicate buffer 

rinsing).
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Figure S32. Dissipation changes of L-S on SAMs of different chemistry at different salt 

concentrations of a) 1 mM, b) 10 mM, c) 100 mM, and d) 1000 mM.
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Figure S33. Frequency changes of PVA-S on SAMs of different chemistry at different salt 

concentrations of a) 1 mM, b) 10 mM, c) 100 mM, and d) 1000 mM (arrows indicate buffer 

rinsing).
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Figure S34. Dissipation changes of PVA-S on SAMs of different chemistry at different salt 

concentrations of a) 1 mM, b) 10 mM, c) 100 mM, and d) 1000 mM.
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Figure S35. Rh as the function of salt concentration for L-S, and PVA-S polymers
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