Supplementary Data

1. Coordination-insertion mechanism of I-lactide ring-opening polymerization using liquid Sn(OnR)₂ as an initiator

From the kinetic investigations by using non-isothermal DSC methods, the proposed coordination-insertion mechanism of the ring-opening polymerization in bulk using liquid tin(II) *n*-alkoxides $(Sn(OnR)_2)$ can be shown in Fig. 1.

 $R = C_4 H_9, C_6 H_{13}, C_8 H_{17}$ R' = CH(CH₃)C(O)OCH(CH₃)

Fig. 1 Coordination-insertion proposed mechanism for the ring-opening polymerization (ROP) in bulk of I-lactide cyclic ester monomer initiated by liquid tin(II) *n*-alkoxides.

2. Characterization of poly(I-lactide) using liquid tin(II) *n*-butoxide as an initiator

2.1. Qualitative structural characterization by FTIR

Fig. 2 shows a typical FTIR spectrum of one of the purified poly(l-lactide) products and the major vibrational peak assignments are listed in Table 1.

Fig. 2 FTIR spectrum of purified poly(I-lactide) synthesized by using 0.1 mol% liquid Sn(OnC₄H₉)₂ as an initiator at 120 °C for 24 h.

Table 1 FTIR major vibrational peak assignments for purified poly(l-lactide) synthesized byusing 0.1 mol% liquid $Sn(OnC_4H_9)_2$ as an initiator at 120 °C for 24 h.

Vibrational	Band	Wavenumber
assignments	intensity*	(cm ⁻¹)
C-H stretching, in CH/CH ₃	m	2997, 2946
C-O bending	s	1758
C-H bending, in CH/CH ₃	s	1454, 1383
C-O stretching, acyl-oxygen	s	1267
C-O stretching, alkyl-oxygen	s	1096

*w = weak, m = medium, s = strong

Poly(I-lactide), PLLA

2.2. Microstructural characterization by ¹H-NMR

A typical ¹H-NMR spectrum of a poly(l-lactide) in deuterated chloroform solution at room temperature including the peak assignments for the various protons of polymer structure were shown in Fig. 3 and the chemical shifts of the various peaks are given in Table 2.

Fig. 3 400 MHz ¹H-NMR spectrum of purified poly(l-lactide) synthesised by using 0.1 mol% liquid tin(II) *n*-butoxide $(Sn(OnC_4H_9)_2)$ as an initiator at 120 °C for 24 h.

Table 2 Proton assignments and chemical shifts (δ , ppm) of the ¹H-NMR spectrum of poly(l-lactide) synthesized by using 0.1 mol% liquid Sn(OnC₄H₉)₂ as an initiator at 120 °C for 24 h.

Proton	Peak	Chemical shift
assignments	multiplicity	(δ, ppm)
a	doublet	1.59
b	quartet	5.06