Supplementary Materials

The fabrication of a novel polyacrylonitrile/reduced graphene oxide-aminohalloysite/bimetallic metal–organic framework electrospun nanofiber adsorbent for the ultrasonic-assisted thin-film microextraction of fatty acid methyl esters in dairy products with gas chromatography-flame ionization detection

R. Mirzajani^a*, F. Kardani^a, Z. Ramezani^b

^aChemistry Department, College of Science, Shahid Chamran University of Ahvaz, Ahvaz,

Iran

^b Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran E-mail address: rmirzajani@scu.ac.ir (R. Mirzajani) Tel. / Fax +986133738044

Figurs of contents in Supporting Information:

Fig 1S. EDS spectera of (a) HNT (b) rGO-amino-HNT/ (Co_{0.5} Zn_{0.5} (MeIm)₂) nanocomposite.

Fig 2S. X-ray diffraction patterns of (a) reduced graphene oxide (b) bimetallic ZIFs ($Cox \cdot Zn_{1-x}(Melm)_2$) metal-organic framework (c) rGO-amino-HNT/ ($Co_{0.5} Zn_{0.5} (Melm)_2$) nanocomposite.

Fig 3S. Desirability ramp for the numerical optimization of three goals, namely the pH, NaCl (%w/v), and Extraction time (min).

Fig. 4S Chromatograms of (a) standard solution of fatty acids methyl esters in n-hexane and unspiked, (b) milk, (c) yogurt and (d) yogurt soda.

Fig. 1S EDS spectera of (a), HNT (b) rGO-amino-HNT/ $(Co_{0.5} Zn_{0.5} (Melm)_2)$ nanocomposite

Fig .2S X-ray diffraction patterns of (a) reduced graphene oxide (b) bimetallic ZIFs (Cox-Zn_{1-x}(MeIm)₂) metal-organic framework (c)

rGO-amino-HNT/ (Co_{0.5} Zn_{0.5} (MeIm)_2) nanocomposite

Fig. 3S Desirability ramp for the numerical optimization of three goals, namely the pH, NaCl (%w/v) and Extraction time (min)

Fig. 4S Chromatograms of (a) standard solution of fatty acids methyl esters in n-hexane and unspiked: (b) milk, (c) yogurt and (d) yogurt soda.

	Concentration (mg kg ⁻¹)				
Sample	PAME	SAME	OAME	LAME	
Milk	47.35	55.76	28.48	19.52	
Yogurt	42.62	51.48	18.36	9.56	
Cheese	38.63	43.58	16.85	11.85	
Yogurt soda	17.59	22.61	8.47	7.75	
Butter	63.58	68.43	25.85	22.57	

Table S1 The amount of detected of FAME in dairy products using the proposed TFME-GC-FID method