Electronic Supplementary Material

Catalyst-free and recycle-reinforcing elastomer vitrimer with exchangeable links

Jinyun Wang,^a Shubin Chen,^a Tengfei Lin,^{*a} Jinhuang Ke,^a Tianxiang Chen,^a Xiao Wu^a

and Cong Lin^a

^a College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, PR

China

*Corresponding Author. E-mail: <u>tflin@fzu.edu.cn</u> (T. Lin).

Figures and Tables

Figure S1. Curing profiles of XNBR-*χ* elastomers.

Samples	Tc ₅₀ (min:s)	Tc ₉₀ (min:s)	$M_L(dN.m)$	M _H (dN.m)	$\Delta M (dN.m)$
XNBR-10	23:18	52:16	0.9	1.7	0.8
XNBR-30	22:02	50:06	0.8	2.4	1.6
XNBR-50	17:28	48:54	0.9	2.5	1.6
XNBR-70	15:39	47:13	0.7	2.1	1.4
XNBR-90	12:43	44:10	0.6	1.2	0.6

Table S1. Vulcanization properties of XNBR- χ elastomers

* $\Delta M = M_H - M_L$

Immersed in toluene for a week

Figure S2. Photographs of XNBR-50 in dissolution/swell experiment. (a) Uncured

XNBR-50. (b) Cured XNBR-50.

	Crosslinking	Young's	100%	300%	Tensile	Elongation
Samples	densities	modulus	Modulus	Modulus	strength	at break
	$(10^{-4} mol/cm^3)$	(MPa)	(MPa)	(MPa)	(MPa)	(%)
XNBR-10	1.3 ± 0.1	1.5 ± 0.2	0.6 ± 0.1	/	1.3 ± 0.1	253 ± 5
XNBR-30	1.6 ± 0.1	1.6 ± 0.1	0.7 ± 0.1	1.5 ± 0.2	2.0 ± 0.4	314 ± 50
XNBR-50	3.7 ± 0.1	2.1 ± 0.2	0.9 ± 0.1	2.4 ± 0.1	2.8 ± 0.3	342 ± 32
XNBR-70	3.1 ± 0.1	2.1 ± 0.3	0.9 ± 0.1	2.2 ± 0.2	3.6 ± 0.4	512 ± 65
XNBR-90	2.2 ± 0.1	1.8 ± 0.1	0.6 ± 0.1	1.0 ± 0.1	2.2 ± 0.1	901 ± 55

Table S2. Crosslinking densities and mechanical properties and of XNBR- χ elastomers

Figure S3. (a) FTIR spectra of uncured and cured XNBR-50. (b) Comparison of epoxy (960~700 cm⁻¹), carbonyl and carboxyl groups (1800~1550 cm⁻¹) of uncured and cured XNBR-50 in the FTIR spectra. (c) Evolution of ester groups, (d) epoxy groups of FTIR

spectra during the curing of XNBR-50 at 160 °C.

Figure S4. Curing curves of the original and recycled XNBR-50s.

Samples	Tc ₅₀	Tc ₉₀	M_L	M_{H}	Crosslinking densities
	(min:s)	(min:s)	(dN.m)	(dN.m)	$(10^{-4} mol/cm^3)$
Origin	17:54	49:00	0.8	2.5	3.7 ± 0.1
1st recycle	19:19	49:44	1.5	2.7	3.5 ± 0.1
2nd recycle	18:39	49:59	1.7	2.7	3.3 ± 0.1
3rd recycle	18:10	50:44	1.9	2.8	3.3 ± 0.1

Table S3. Vulcanization properties and crosslinking densities of the original and

recycled XNBR-50s.

Table S4. Mechanical properties of the original and recycled XNBR-50s.

	Tensile	Young's	100%	300%	Breaking	Shore A
Samples	strength	modulus	Modulus	Modulus	Elongation	hardness
	(MPa)	(MPa)	(MPa)	(MPa)	(%)	(kN·m ⁻¹)
Origin	2.8 ± 0.3	2.1 ± 0.2	0.9 ± 0.1	2.4 ± 0.1	342 ± 32	38
1st recycle	5.1 ± 0.4	2.4 ± 0.1	0.7 ± 0.1	1.4 ± 0.1	835 ± 29	40
2nd recycle	5.5 ± 0.1	2.3 ± 0.1	0.6 ± 0.1	1.1 ± 0.1	823 ± 42	41
3rd recycle	6.4 ± 0.5	2.1 ± 0.2	0.5 ± 0.1	1.0 ± 0.1	740 ± 23	42

		Tensile		Retention ratio	Retention ratio
Samples	Recycling	strength	Elongation at	of Tensile	of Breaking
		(MPa)	break (%)	strength (%)	Elongation (%)
	Origin	2.8 ± 0.3	342 ± 32	/	/
VNDD 50 (our work)	1st Recycle	5.1 ± 0.4	835 ± 29	≈ 182	≈ 244
ANDR-30 (our work)	2nd Recycle	5.5 ± 0.1	823 ± 42	≈ 196	≈ 241
	3rd Recycle	6.4 ± 0.5	740 ± 23	≈ 229	≈216
4.42	Origin	11.0 ± 2.2	0.6 ± 0.2	/	/
4,4 -	1st Recycle	9.1 ± 1.1	0.5 ± 0.1	≈ 83	≈ 83
	2nd Recycle	6.3 ± 0.8	0.3 ± 0.1	≈ 57	≈ 50
Epoxy Kesin ⁺	3rd Recycle	2.8 ± 0.3	0.2 ± 0.1	≈ 25	≈ 3 3
	Origin	2.2 ± 0.3	160 ± 22	/	/
Poly(oxime-ester)	1st Recycle	2.1 ± 0.2	156 ± 19	≈ 95	≈ 9 8
Vitrimer-b ²	2nd Recycle	2.2 ± 0.3	148 ± 31	≈ 100	≈ 9 3
	3rd Recycle	2.0 ± 0.3	149 ± 29	≈ 9 1	≈ 9 3
Sulfur vulcanized	Origin	≈ 3.3	≈ 381	/	/
Polybutadiene	1st Recycle	≈ 2.7	≈ 289	≈ 82	≈ 76
Rubber/CuCl ₂ /fillers	2nd Recycle	≈ 1.8	≈ 248	≈ 55	≈ 65
system ³	3rd Recycle	≈ 1.4	≈ 155	≈ 42	≈ 4 1

Table S5. Comparison of mechanical properties of vitrimers during recycling.

	Origin	4.5 ± 1.3	400 ± 20	/	/
ENR/Bentonite	1st Recycle	≈ 4 .3	≈ 364	≈ 96	≈ 9 1
Composites ⁴	2nd Recycle	≈ 4.1	≈ 333	≈ 91	≈ 83
	3rd Recycle	≈ 3.3	≈ 253	≈ 73	≈ 63
The acetal	Origin	28.8 ±1.9	4.4 ± 0.7	/	/
dynamic networks	1st Recycle	29.2 ± 2.7	5.0 ± 0.9	≈ 101	≈114
PC-5% OH ⁵	2nd Recycle	27.2 ± 1.6	3.4 ± 0.3	≈ 94	≈ 77
ENR/TEMPO	Origin	≈ 5.8	pprox 784	/	/
oxidized cellulose	1st Recycle	≈ 4.8	pprox 707	≈ 83	≈ 90
nanocrystals ⁶	2nd Recycle	≈ 3.9	≈ 690	≈ 67	pprox 88
Sulfur vulcanized chloroprene rubber ⁷	Origin	≈ 9.1	≈ 634	/	/
	1st Recycle	≈ 8.5	≈ 557	≈ 93	pprox 88
	2nd Recycle	≈ 7.8	≈ 549	≈ 86	pprox 87
Polyhydroxyurethane	Origin	72.1 ± 11.1	6.9 ± 3.8	/	/
Vitrimer ⁸	1st Recycle	53.1 ± 8.1	4.8 ± 0.8	≈ 74	pprox 70
ENR/Dithiodibutyric	Origin	12 ± 2	5.3 ± 0.2	/	/
acid ⁹	1st Recycle	5 ± 1	4.2 ± 0.2	≈ 42	≈ 79
ENR/ modified	Origin	15.7 ± 1.2	338 ± 13	/	/
carbon black ¹⁰	1st Recycle	≈ 13.1	≈ 399	≈ 83	≈ 118

Figure S5. Comparison of FTIR spectra of the original and recycled XNBR-50s.

Figure S6. XRD curves of XNBR-50s at 100%, 200% and 300% strain. (a) Original sample. (b) First recycled sample. (c) Second recycled sample. (d) Third recycled

sample.

Figure S7. SEM images of XNBR-50s. (a) Original sample. (b) First recycled sample.

(c) Second recycled sample. (d) Third recycled sample.

Figure S8. Cyclic loading-unloading curves of XNBR-50s at 100%, 300% and 600% strain. (a) Original sample. (b) First recycled sample. (c) Second recycled sample. (d)

Third recycled sample.

Figure S9. (a) Self-healing process of XNBR-50. (b) Stress-strain curves of original sample and the welding sample of XNBR-50. (c) Reshaping plots of XNBR-50.

References

- Z. Ma, Y. Wang, J. Zhu, J. Yu and Z. Hu, J. Polym. Sci., Part A: Polym. Chem., 2017, 55, 1790-1799.
- C. He, S. Shi, D. Wang, B. A. Helms and T. P. Russell, J. Am. Chem. Soc., 2019, 141, 13753-13757.
- H. P. Xiang, H. J. Qian, Z. Y. Lu, M. Z. Rong and M. Q. Zhang, *Green Chem.*, 2015, 17, 4315-4325.
- 4. C. Xu, R. Cui, L. Fu and B. Lin, *Compos. Sci. Technol.*, 2018, 167, 421-430.
- Q. Li, S. Ma, S. Wang, W. Yuan, X. Xu, B. Wang, K. Huang and J. Zhu, *J. Mater. Chem. A*, 2019, 7, 18039-18049.
- 6. L. Cao, J. Fan, J. Huang and Y. Chen, J. Mater. Chem. A, 2019, 7, 4922-4933.
- H. P. Xiang, M. Z. Rong and M. Q. Zhang, ACS Sustainable Chem. Eng., 2016, 4, 2715-2724.
- D. J. Fortman, J. P. Brutman, C. J. Cramer, M. A. Hillmyer and W. R. Dichtel, J. Am. Chem. Soc., 2015, 137, 14019-14022.
- L. Imbernon, E. K. Oikonomou, S. Norvez and L. Leibler, *Polym. Chem.*, 2015, 6, 4271-4278.
- M. Qiu, S. Wu, S. Fang, Z. Tang and B. Guo, J. Mater. Chem. A, 2018, 6, 13607-13612.