## Study of enantioselective metolachlor adsorption by activated carbons

Alicia Gomis-Berenguer\*<sup>a</sup>, Isabelle Laidin<sup>b</sup>, Sophie Renoncial<sup>b</sup> and Benoît Cagnon\*<sup>a</sup>

alnterfaces, Confinement, Matériaux et Nanostructures-ICMN, UMR 7374-CNRS, Université d'Orléans, 1B, rue de la Férollerie, 45071 Orléans Cedex 2, France.

<sup>b</sup>JACOBI carbons, 15 Route de Foëcy, 18100 Vierzon, France.

## ELECTRONIC SUPPLEMENTARY INFORMATION



**Figure S1**. Example of chromatogram obtained for Rac-Metolachlor (1 and 20 ppm) at 230 nm.



**Figure S2.** Thermogravimetric profile of R-KC and L27 adsorbents obtained under Ar flow (50 mL/min, 10 °C/min).



**Figure S3**. Evolution of Rac-Metolachlor adsorption in removal percentage as a function of the contact time at 25 °C for the four adsorbents. The error bars represent the standard deviation.



Figure S4. Intraparticle diffusion for Rac-Metolachlor on L27, AQ630, S21 and R-KC.



**Figure S5.** Adsorption kinetics of Rac-Metolachlor on AQ630 (left) and L27 (right) in aqueous solution at pH free and pH 2.



**Figure S6**. Evolution of Rac-Metolachlor, S-Metolachlor (60 %) and S-Metolachlor (100 %) removal efficiency as a function of the contact time at 25 °C for the four adsorbents. The error bars represent the standard deviation.adsorption in removal percentage.



**Figure S7**. Experimental efficiency removal percentage of Rac-Metolachlor, S-Metolachlor (60 %) and S-Metolachlor (100 %) at 25 °C for the four adsorbents. The error bars represent the standard deviation



Figure S8. Atropisomers of Metolachlor molecule.