Supporting Information

Cyclohexamer [-(*D*-Phe-azaPhe-Ala)₂-]: good candidate to formulate supramolecular organogels.

Mohamed I. A. Ibrahim, *^{a, b} Guillaume Pickaert,^a Loïc Stefan,^a Brigitte Jamart-Grégoire,^a Jacques Bodiguel,^a and Marie-Christine Averlant-Petit*^a

^a*Laboratoire de Chimie-Physique Macromoléculaire (LCPM), UMR 7375, CNRS, Université de Lorraine, Nancy, France.*

^bLaboratory of Marine Chemistry, Marine Environment Division, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt.

TABLE OF CONTENTS

Figure S1. (a) Gelation tests in different solvents (T = toluene, p -X = p -xylene, CB = chlorobenzene	2
and B = benzene), and (b) aerogel of 2 from toluene obtained under supercritical CO ₂ condition. Figure S2. ¹ H NMR (600 MHz) of compound 2 in toluene- d_8 ; (0.1 mM at 293 K)	2
Figure S3. 2D ROESY spectrum of hetero cyclohexamer 2 in toluene- <i>d</i> ₈ ; (1.0 mM at 293 K) illustrating the ROE correlations of conformers 2A and 2B	3
Figure S4a. Temperature-dependent ¹ H NMR (300 MHz) of compound 2 in gel state (0.5 wt%) in benzene- d_6	3
Figure S4b. Temperature-dependent ¹ H NMR (300 MHz) of compound 2 in gel state (0.5 wt%) in chlorobenzene- d_5	4
Figure S4c. Temperature-dependent ¹ H NMR (300 MHz) of compound 2 in gel state (0.5 wt%) in p -xylene- d_{10}	4
Figure S5. Comparison of the ATR-FTIR spectra in the crystal (black), aerogel (red), and xerogel (blue) states for 2 ; a) NH stretching region, and b) CO stretching region.	5
Figure S6. Temperature-dependent FTIR spectra of organogels from 2 at $c = 0.5$ wt %: (a, b) benzene (T = 25 to 70 °C), (c, d) chlorobenzene (T = 25 to 90 °C), and (e, f) <i>p</i> -xylene (T = 25 °C to 90 °C).	6
Figure S7. Sol-to-gel transition temperature (Tg) by FTIR at the inflection point of the two curves of the free NH (3410 cm ⁻¹) and bound CO (1628 cm ⁻¹) groups for toluene- d_8 gel form 2 at 0.5 wt	7
% Figure S8. Oscillatory stress sweep experiments (OSS) for organogels of 2 (c =0.5 wt%, ω = 0.63 rad. s ⁻¹ , T = 25 °C)	7
Figure S9. The rheogram shows the oscillatory time sweep experiments (OTS) for the organogels from 2 ; (c = 0.5 wt%, ω = 0.628 rad s ⁻¹ , σ = 1.5 Pa, T = 25 °C)	7
Figure S10. The rheograms for the oscillatory temperature sweep experiments, plot of the elastic (G') and viscous (G") moduli as a function of temperature (T) for a range of concentrations in the different gelled solvents: a) benzene, b) chlorobenzene, c) toluene, and d) <i>p</i> -xylene; ($\omega = 0.628$ rad s ⁻¹ , $\sigma = 1.5$ Pa)	8
Figure S11. Oscillatory temperature sweep experiment shows the transition temperature of gel 2 from toluene (Tg = $\sim 67 ^{\circ}$ C); (c = 0.5 wt%, $\sigma = 1.5 $ Pa, $\omega = 0.628 $ rad s ⁻¹)	9
Figure S12. Variation of Tg (°C) as a function of concentration (wt%) for the organogels of 2 from different gelled solvents	9
Figure S13. The rheogram of the oscillatory frequency sweep experiments (OFS); G' and G'' as a function of angular frequency at the Tg of toluene gel from 2; ($c = 0.5$ wt %, T = 65 °C, $\sigma = 1.5$ Pa)	9
Figure S14. The rheogram shows the oscillatory frequency sweep experiments (OFS), plot of the average values of G' and G" for a range of concentrations in the different gelled solvents as a function of angular frequency (ω); (c = 0.4 - 1.0 wt %, T = 25 °C, σ = 1.5 Pa).	10
Figure S15. SEM images of xerogels obtained from air-drying of organogels of 2 from: (a) toluene, (b) benzene, (c) chlorobenzene, and (d) <i>p</i> -xylene	10
Figure S16. PSG by gelator 2 : (a) addition of the concentrated ethanolic solution of 2 ($c = 25 \%$ w/v) to organic/aqueous mixture, (b) gelation of the organic phase, and (c) separation of the organogel by filtration	11
Table S1. % of recovered organic solvent from (water/organic) mixture by PSG method	11

(a) (b) Figure S1. (a) Gelation tests in different solvents (T = toluene, p-X = p-xylene, CB = chlorobenzene and B = benzene), and (b) aerogel of (2) from toluene obtained under supercritical CO₂ condition.

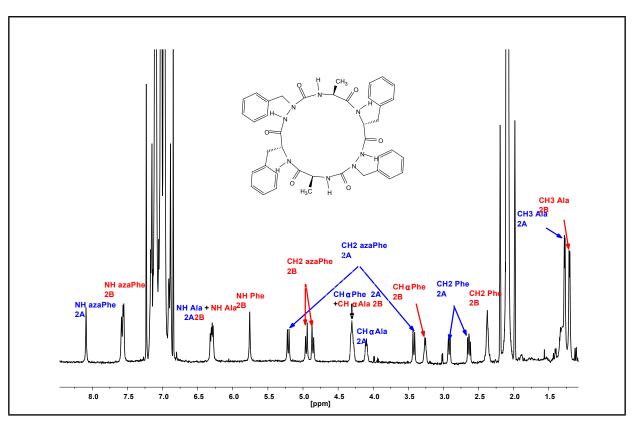
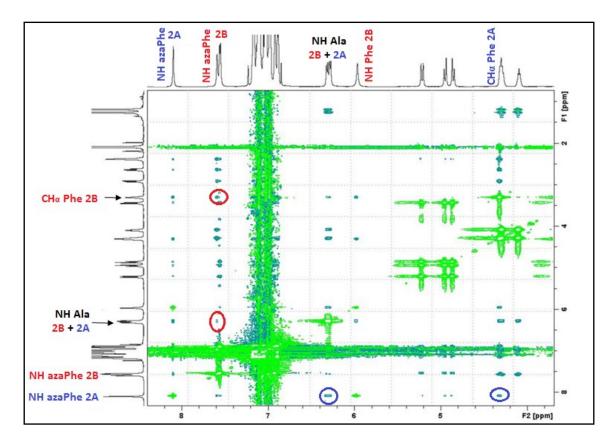
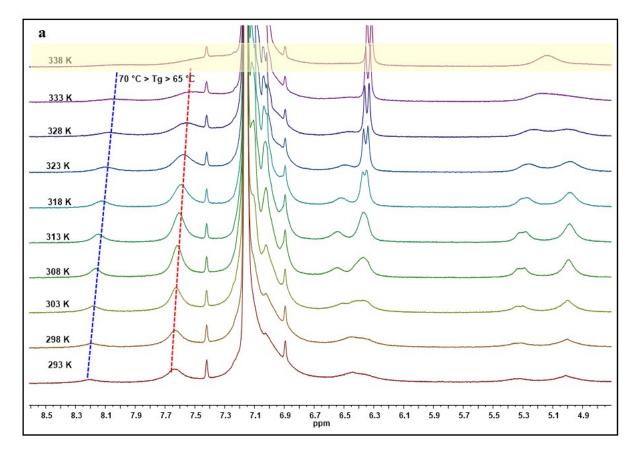
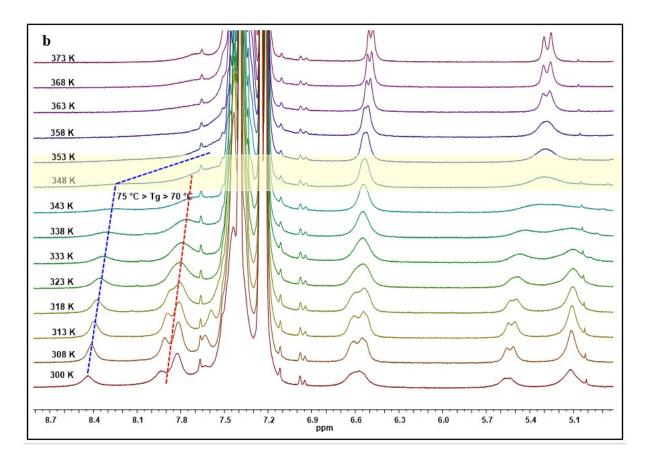
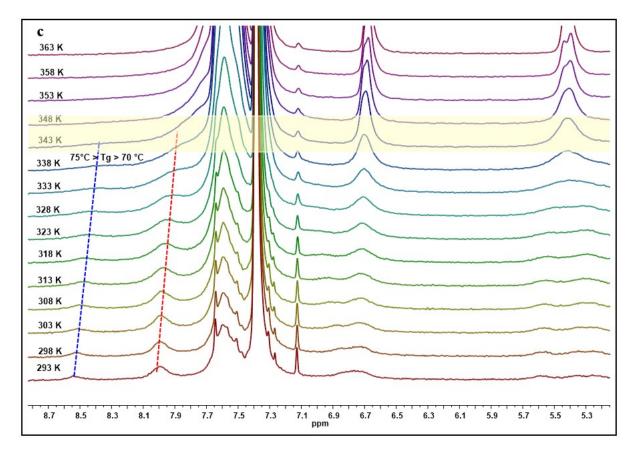
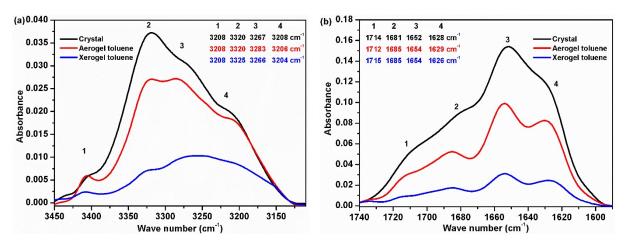
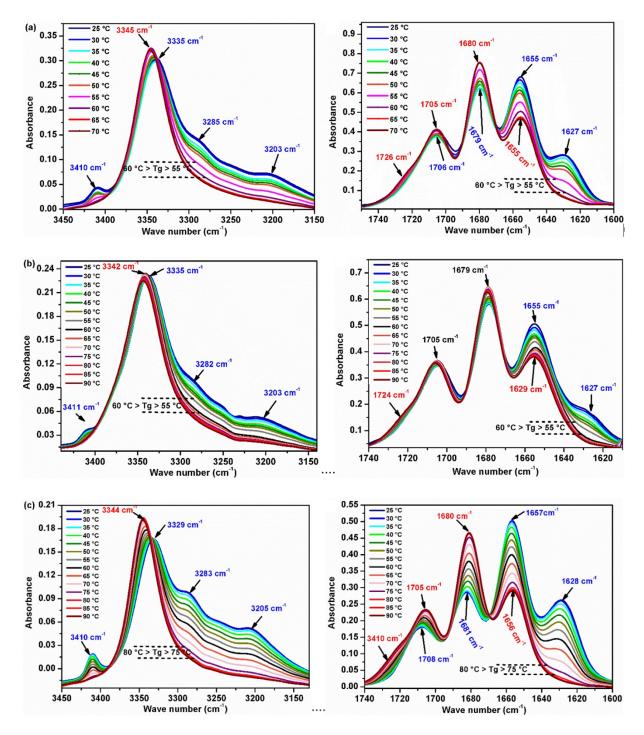



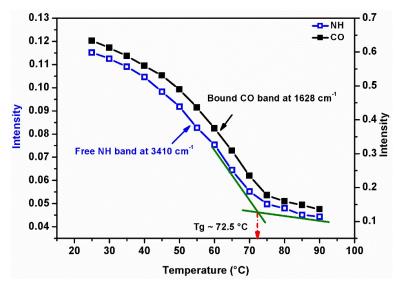
Figure S2. ¹H NMR (600 MHz) of compound (2) in toluene- d_8 ; (1.0 mM at 293 K).

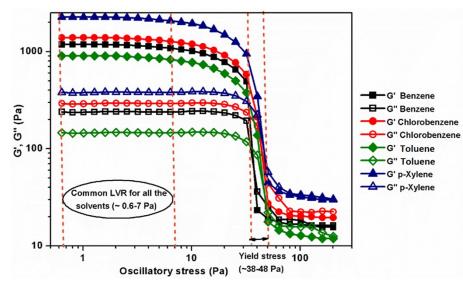
Figure S3. 2D ROESY spectrum of hetero cyclohexamer (2) in toluene- d_8 ; (1.0 mM at 293 K) illustrating the ROE correlations of conformers **2A** and **2B**.

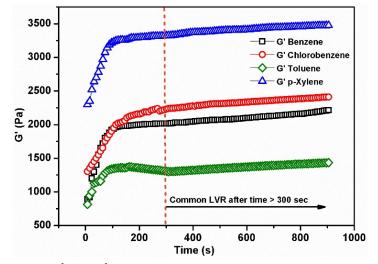





Figure S4a. Temperature-dependent ¹H NMR (300 MHz) of compound (2) in gel state (0.5 wt%) in benzene- d_6 .


Figure S4b. Temperature-dependent ¹H NMR (300 MHz) of compound (2) in gel state (0.5 wt%) in chlorobenzene- d_5 .


Figure S4c. Temperature-dependent ¹H NMR (300 MHz) of compound (2) in gel state (0.5 wt%) in *p*-xylene- d_{10} .


Figure S5. Comparison of the ATR-FTIR spectra in the crystal (black), aerogel (red), and xerogel (blue) states for (2); a) NH stretching region, and b) CO stretching region.


Figure S6. Temperature-dependent FTIR spectra of organogels from (2) at c = 0.5 wt %; NH stretching region (left) and CO stretching region (right): (a) benzene (T = 25 to 70 °C), (b) chlorobenzene (T = 25 to 90 °C), and (c) *p*-xylene (T = 25 to 90 °C).

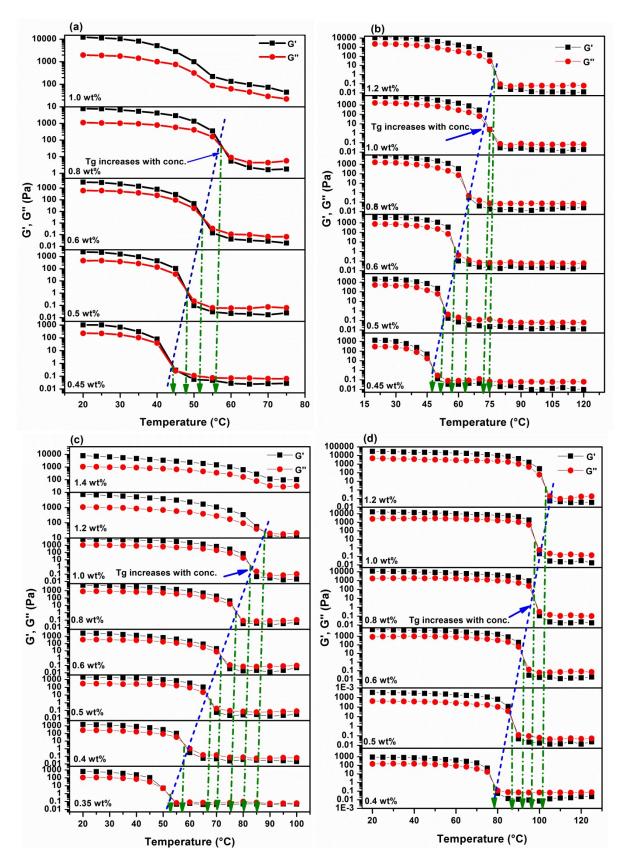
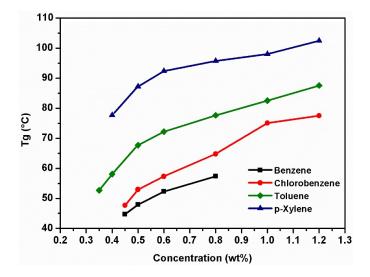
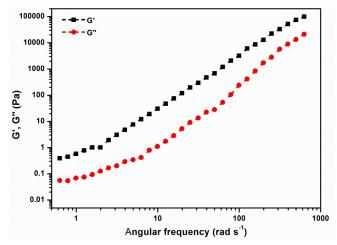
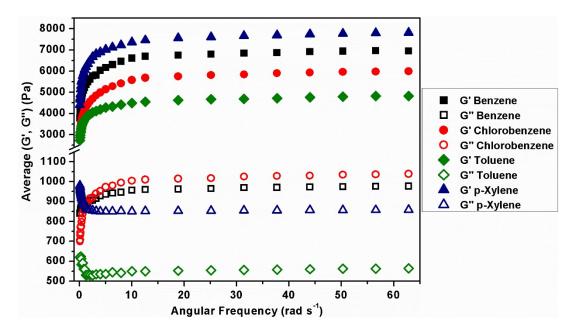
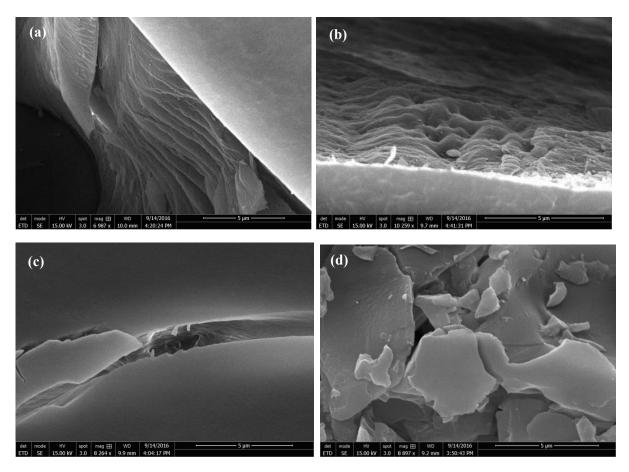

Figure S7. Sol-to-gel transition temperature (Tg) by FTIR at the inflection point of the two curves of the free NH (3410 cm⁻¹) and bound CO (1628 cm⁻¹) groups for toluene- d_8 gel form (2) at 0.5 wt %.

Figure S8. Oscillatory stress sweep experiments (OSS) for organogels of (2) (c =0.5 wt%, ω = 0.63 rad. s⁻¹, T = 25 °C).


Figure S9. The rheogram shows the oscillatory time sweep experiments (OTS) for the organogels from (2); (c = 0.5 wt%, $\omega = 0.628 \text{ rad s}^{-1}$, $\sigma = 1.5 \text{ Pa}$, T = 25 °C).


Figure S10. The rheograms for the oscillatory temperature sweep experiments, plot of the elastic (G') and viscous (G") moduli as a function of temperature (T) for a range of concentrations in the different gelled solvents: a) benzene, b) chlorobenzene, c) toluene, and d) *p*-xylene; ($\omega = 0.628$ rad s⁻¹, $\sigma = 1.5$ Pa).


Figure S11. Oscillatory temperature sweep experiment shows the transition temperature of gel (2) from toluene (Tg = $\sim 67 \text{ °C}$); (c = 0.5 wt%, $\sigma = 1.5 \text{ Pa}$, $\omega = 0.628 \text{ rad s}^{-1}$).


Figure S12. Variation of Tg (°C) as a function of concentration (wt%) for the organogels of (2) from different gelled solvents.

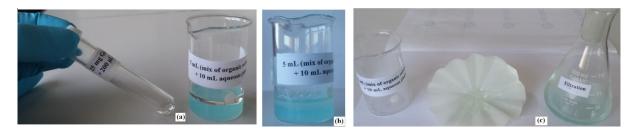

Figure S13. The rheogram of the oscillatory frequency sweep experiments (OFS); G' and G'' as a function of angular frequency at the Tg of toluene gel from (2); (c = 0.5 wt %, T = 65 °C, $\sigma = 1.5$ Pa).

Figure S14. The rheogram shows the oscillatory frequency sweep experiments (OFS), plot of the average values of G' and G" for a range of concentrations in the different gelled solvents as a function of angular frequency (ω); (c = 0.4 - 1.0 wt %, T = 25 °C, σ = 1.5 Pa).

Figure S15. SEM images of xerogels obtained from air-drying of organogels of (2) from: (a) toluene, (b) benzene, (c) chlorobenzene, and (d) *p*-xylene.

Figure S16. PSG by gelator (2): (a) addition of the concentrated ethanolic solution of (2) (c = 12.5 % w/v) to organic/aqueous mixture, (b) gelation of the organic phase, and (c) separation of the organogel by filtration.

Table S1. % of recovered organic solvent from (water/organic) mixture by PSG method

Organic solvent	% Organic solvent recovered
Toluene	96
Benzene	94
<i>p</i> -Xylene	82
Chlorobenzene	77
Mixture	84