Supplementary materials

In silico approach: Biological activities prediction of nординatin derivatives as anticancer agent in cAMP pathway inhibitors

Muhammad Ikhlas Abdjana, Nanik Siti Aminaha*, Imam Siswantoa, Tin Myo Thantb,c, Alfinda Novi Kristantia, Yoshiaki Takayad

aDepartement of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia. E-mail: nanik-s-a@fst.unair.ac.id

bPosdocot fellow Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya, Indonesia. 60115

cDepartment of Chemistry, Mandalar Degree College, Mandalay, Myanmar

dFaculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503 Japan
Fig. S1. Types of interactions in each complex of the candidate-receptor: (A) PS-1, (B) PS-2, (C) PS-3, (D) PS-5, (E) PS-7, and (F) PS-9.
Fig. S2. The residual energy decomposition plotted along with the simulation over the last 20 ns of each complex.
Fig. S3. Lifetime H-bond of each complex
Fig. S4 The suitable physicochemical space for oral bioavailability prediction (A) PS-1, (B) PS-2, (C) PS-3, (D) PS-5, (E) PS-7, and (F) PS-9
<table>
<thead>
<tr>
<th>Parameters</th>
<th>PS-1</th>
<th>PS-2</th>
<th>PS-3</th>
<th>PS-5</th>
<th>PS-7</th>
<th>PS-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Solubility (log mol/L)</td>
<td>-6.31</td>
<td>-6.15</td>
<td>-5.95</td>
<td>-5.97</td>
<td>-6.31</td>
<td>-6.30</td>
</tr>
<tr>
<td>Caco-2 Permeability (log Papp in 10^{-6} cm/s)</td>
<td>1.30</td>
<td>1.24</td>
<td>1.19</td>
<td>0.83</td>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>Intestinal Absorption-Human (%) Absorbed</td>
<td>90.56</td>
<td>93.83</td>
<td>95.38</td>
<td>100</td>
<td>95.15</td>
<td>92.22</td>
</tr>
<tr>
<td>Skin Permeability (Log Kp)</td>
<td>-2.74</td>
<td>-2.74</td>
<td>-2.74</td>
<td>-2.73</td>
<td>-2.73</td>
<td>-2.74</td>
</tr>
<tr>
<td>P-glycoprotein substrate</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Distribution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VDss-Human (log L/Kg)</td>
<td>-0.06</td>
<td>-0.06</td>
<td>-0.04</td>
<td>-0.48</td>
<td>-0.15</td>
<td>0.01</td>
</tr>
<tr>
<td>Fraction Unbound-Human (Fu)</td>
<td>0.01</td>
<td>0.03</td>
<td>0.04</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>BBB Permeability (log BB)</td>
<td>-0.25</td>
<td>-0.26</td>
<td>-0.26</td>
<td>-1.08</td>
<td>-0.41</td>
<td>-0.26</td>
</tr>
<tr>
<td>Metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CYP2D6 Substrate</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CYP1A2 Inhibitor</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>CYP2D6 Inhibitor</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Excretion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Clearance (log mL/min/Kg)</td>
<td>-0.36</td>
<td>-0.02</td>
<td>-0.09</td>
<td>0.13</td>
<td>0.36</td>
<td>0.08</td>
</tr>
<tr>
<td>Renal OCT2 Substrate</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Toxicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMES Toxicity</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Max. Tolerated Dose-Human (log mg/Kg/day)</td>
<td>0.53</td>
<td>0.54</td>
<td>0.59</td>
<td>0.39</td>
<td>0.56</td>
<td>0.61</td>
</tr>
<tr>
<td>hERG I Inhibitor</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Oral Rat Acute Toxicity-LD50 (mol/Kg)</td>
<td>3.46</td>
<td>3.21</td>
<td>2.97</td>
<td>2.54</td>
<td>2.72</td>
<td>3.20</td>
</tr>
<tr>
<td>Oral Rat Chronic Toxicity-LOAEL (log mg/Kg_bw/day)</td>
<td>0.71</td>
<td>1.21</td>
<td>1.49</td>
<td>1.33</td>
<td>1.45</td>
<td>1.11</td>
</tr>
<tr>
<td>Hepatotoxicity</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Skin Sensitisation</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>