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A. Instrument

NMR spectra were recorded on an Avance |11 500 spectrometer (Bruker). Chemical shifts of
'H NMR signals were quoted to tetramethylsilane (6 = 0.00) as an internal standards. Matrix-
assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were collected
on a Autoflex 111 spectrometer (Bruker Daltonics) using dithranol as the matrix. Elemental
analyses were carried out with a Yanaco MT-5 CHN corder. The UV/vis absorption and PL
spectra of organic films were measured with a UV-2550 (Shimadzu) and a FluoroMax-4
spectrofluorometer (Horiba Scientific), respectively. The photoluminescence quantum
efficiency (@rL) was measured using an absolute PL quantum yield measurement system
(Hamamatsu Photonics C9920-02, PMA-11). Luminescence intensity and lifetime of organic
films were measured with a Streak camera (Hamamatsu Photonics C4334). The organic films
were excited by an N gas laser (4 = 337 nm, pulse width = 500 ps, repetition rate 20 Hz) under
a vacuum of < 4x10~! Pa. Samples were cooled down at 5 K with a cryostat (Iwatani Industrial
Gases). The density-functional theory (DFT) computations were performed on the Gaussian 09
program package, using the B3LYP functional with the 6-31G(d,p) basis set. Angular-
dependent PL spectra of 6 wt% emitter-doped PPT films (15 nm thick) were measured to
determine the molecular orientation. The sample consisted of a glass substrate was attached to
a fused silica half-cylinder prism with a refractive index-matching liquid and an excitation CW
laser at the wavelength of 375 nm with a power less than 20 mW was irradiated onto the film.
Through a cutoff filter, a polarizer, and a collimating lens, PL intensity in a transverse magnetic
mode was detected by a monochromator (PMA-11, Hamamatsu Photonics). The PL intensities
were acquired in each out-of-plane angle from 0° (vertical to the substrate surface) to 90°
(horizontal to the substrate surface), with a step of 1°(C14234-11; Hamamatsu Photonics). The
obtained PL intensity angle-dependent patterns were analyzed using a commercial software
package (Setfos 3.4, Fluxim).
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B. NMR spectra
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Fig. S1. 'H NMR of (a) AcPYM and (b) PxPYM.
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Fig. S2. *°C NMR of (a) AcPYM and (b) PXPYM.
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C. TD-DFT calculations data

Table S1. Triplet and singlet excitation energies (vertical transition), oscillator strength (f), and
transition configurations of AcPYM and PxPYM calculated by TD-DFT at the B3LYP/6-
31G(d,p).

Emitter State E [eV] f Main configuration AEsT [eV]
S1 2.420 0.0000 H—-L 0.6991 0.006
S> 2.632 0.0000 H-1-L 0.6957
H-1-L+3 0.1215
AcPYM
T1 2.414 0.0000 H—L 0.6986
T, 2.626 0.0000 H-1-L 0.6947

H-1-L+3 0.1252

S1 2.102 0.0002 H—L 0.6994 0.006
S2 2.311 0.0005 H-1—L 0.6963
H-1—-L+3 0.1169
PXPYM
T1 2.096 0.0000 H—L 0.6988
T2 2.306 0.0000 H-1—-L 0.6954
H-1-L+3 0.1213
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Fig. S3. The optimized molecular structure and transition dipole moments of (a) AcYPM and
(b) PXPYM.
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D. Thermal and photophysical properties

(@)

DSC /{mW/mg) Flow /(ml/ min)
T exo
250
10 4
o 200

Complex Peak
Area 7548 J/g
Peak 2728 ° C

64 Onset 2708 ° C
End: 2742° C
/ L 150
/
4
‘/
//
/

100

N
L‘;
\\\
| wtw
-
%3

/ Lo

Complex Peak 1 5]
Area. -914J/g
Pesk: 3614 C “

-4 4 Omset 3574° C

End 3631° C Lo
0 50 100 150 200 250 300 350
Temperature /° C
DSC /(mW/mg) Flow Aml/min)
10T ee
+ 250
8
Are A‘
51 Ot 200
nd
4 4
- 150
2o
04
L 100
2
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, V.48
g / L 50
< Complex Peak !
6 Areo—=1062 g N
Pesk 3785°' C
Onset 375 C
Erd 3821°C Fo
.8 .
50 100 150 250 300 350

200 |
Temperature /° C

Fig. S4. DSC profiles of (a) AcPYM and (b) PxPYM.
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Fig. S5. TGA profiles of AcPYM (red) and PxPYM (black).
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Fig. S6. Photoelectron yield spectra of (a) AcCPYM and (b) PxPYM.
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Fig. S7. PL and spectra of prompt luorescence at 300 K (black) and phosphorescence at 77 K
(red) for (a) AcCPYM and (b) PXPYM.
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Fig. S8. UV-Vis and PL spectra of (a) AcPYM and (b) PxPYM neat film.
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Table S2. Photophysical properties of AcPYM and PxPYM in solution® and neat film.

Jabs [nm] Jr[NmM] ®p [%0]
Emitter solution neat
solution neat solution neat
air N2 air N
AcPYM 375 374 477 474 31.0 449 33.0 34.9
PxPYM 394 403 532 540 325 64.6 50.5 54.0

3 in toluene, 10* M

E. Determination of rate constants

Table S3. Rate constants and quantum efficiencies of AcPYM and PxPYM®.

Emitter kS Kd kisc Krisc KnrT dDisc drisc

[s1]?) [s1® [s]® [s71® [s71? [%6]9 [%6]"
ACPYM 2.2x107 2.1x10°3 3.0x107 9.0x10? 1.7x10°8 89.3 11.9
PxPYM 2.4x107 3.5x10° 3.5x107 5.3x10°3 1.3x108 63.3 58.1

dMeasured using 6 wt.% AcPYM:PPT and PxPYM:PPT co-deposited films. PRadiative decay
rate constant of Sy state, ki° = ®p/zp. “Radiative decay rate constant of delayed fluorescence, kq

= 1/7¢. PRadiative decay rate constant of ISC, kisc = kp — ki° — kn, k> = 0. ®Radiative decay

rate constant of RISC, krisc = (Kp X kg X ®a)l/(Kisc X ®p). "Non-radiative decay rate constant of
T state, knr" = ka— (Dp X krisc) . YEfficiency of ISC, disc = 1 — &y, Efficiency of RISC, ®risc

= @yl Disc.
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