Electronic Supplementary Information

Highly Effective Organic Light-Emitting Diodes Containing Thermally Activated Delayed Fluorescence Emitters with Horizontal Molecular Orientation

Chan Hee Lee^a, Shin Hyung Choi^a, Sung Joon Oh^a, Jun Hyeon Lee^a, Jae Won Shim^b, Chihaya Adachi ^{c,d} and Sae Youn Lee^{a,*}

^aDepartment of Energy and Materials Engineering, Dongguk University, Seoul, 04620, Republic of Korea

^bSchool of Electrical Engineering, Korea University, Seoul, 02841, South Korea

^cCenter for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan

^dDepartment of Chemistry and Biochemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

*Corresponding author.

E-mail address: saeyounlee@dongguk.edu

Contents:

A. Instrument	S2
B. NMR spectra	S3-4
C. TD-DFT calculations data	S5
D. Thermal and photophysical properties	S6-9
E. Determination of rate constants	S 9

A. Instrument

NMR spectra were recorded on an Avance III 500 spectrometer (Bruker). Chemical shifts of ¹H NMR signals were quoted to tetramethylsilane ($\delta = 0.00$) as an internal standards. Matrixassisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were collected on a Autoflex III spectrometer (Bruker Daltonics) using dithranol as the matrix. Elemental analyses were carried out with a Yanaco MT-5 CHN corder. The UV/vis absorption and PL spectra of organic films were measured with a UV-2550 (Shimadzu) and a FluoroMax-4 spectrofluorometer (Horiba Scientific), respectively. The photoluminescence quantum efficiency (Φ_{PL}) was measured using an absolute PL quantum yield measurement system (Hamamatsu Photonics C9920-02, PMA-11). Luminescence intensity and lifetime of organic films were measured with a Streak camera (Hamamatsu Photonics C4334). The organic films were excited by an N₂ gas laser ($\lambda = 337$ nm, pulse width = 500 ps, repetition rate 20 Hz) under a vacuum of $< 4 \times 10^{-1}$ Pa. Samples were cooled down at 5 K with a cryostat (Iwatani Industrial Gases). The density-functional theory (DFT) computations were performed on the Gaussian 09 program package, using the B3LYP functional with the 6-31G(d,p) basis set. Angulardependent PL spectra of 6 wt% emitter-doped PPT films (15 nm thick) were measured to determine the molecular orientation. The sample consisted of a glass substrate was attached to a fused silica half-cylinder prism with a refractive index-matching liquid and an excitation CW laser at the wavelength of 375 nm with a power less than 20 mW was irradiated onto the film. Through a cutoff filter, a polarizer, and a collimating lens, PL intensity in a transverse magnetic mode was detected by a monochromator (PMA-11, Hamamatsu Photonics). The PL intensities were acquired in each out-of-plane angle from 0° (vertical to the substrate surface) to 90° (horizontal to the substrate surface), with a step of 1° (C14234-11; Hamamatsu Photonics). The obtained PL intensity angle-dependent patterns were analyzed using a commercial software package (Setfos 3.4, Fluxim).

B. NMR spectra

Fig. S1. ¹H NMR of (a) AcPYM and (b) PxPYM.

Fig. S2. ¹³C NMR of (a) AcPYM and (b) PxPYM.

C. TD-DFT calculations data

Table S1. Triplet and singlet excitation energies (vertical transition), oscillator strength (*f*), and transition configurations of **AcPYM** and **PxPYM** calculated by TD-DFT at the B3LYP/6-31G(d,p).

Emitter	State	<i>E</i> [eV]	f	Main configuration ^{a)}		$\Delta E_{\rm ST}$ [eV]
	S_1	2.420	0.0000	H→L	0.6991	0.006
АсРҮМ	S_2	2.632	0.0000	H-1→L	0.6957	
				H-1→L+3	0.1215	
	T_1	2.414	0.0000	H→L	0.6986	
	T_2	2.626	0.0000	H-1→L	0.6947	
				H-1→L+3	0.1252	
	\mathbf{S}_1	2.102	0.0002	H→L	0.6994	0.006
РхРҮМ	S_2	2.311	0.0005	H−1→L	0.6963	
				$H-1\rightarrow L+3$	0.1169	
	T_1	2.096	0.0000	H→L	0.6988	
	T_2	2.306	0.0000	H−1→L	0.6954	
				$H-1 \rightarrow L+3$	0.1213	

Fig. S3. The optimized molecular structure and transition dipole moments of (a) **AcYPM** and (b) **PxPYM**.

D. Thermal and photophysical properties

Fig. S4. DSC profiles of (a) AcPYM and (b) PxPYM.

Fig. S5. TGA profiles of AcPYM (red) and PxPYM (black).

Fig. S6. Photoelectron yield spectra of (a) AcPYM and (b) PxPYM.

Fig. S7. PL and spectra of prompt luorescence at 300 K (black) and phosphorescence at 77 K (red) for (a) **AcPYM** and (b) **PxPYM**.

Fig. S8. UV-Vis and PL spectra of (a) AcPYM and (b) PxPYM neat film.

Emitter	λ_{abs} [nm]		λ_{PL} [nm]		$arPhi_{ m PL}$ [%]			
	solution	neat	solution	neat	solution		neat	
					air	N_2	air	N_2
AcPYM	375	374	477	474	31.0	44.9	33.0	34.9
PxPYM	394	403	532	540	32.5	64.6	50.5	54.0

Table S2. Photophysical properties of AcPYM and PxPYM in solution^{a)} and neat film.

^{a)} in toluene, 10⁻⁴ M

E. Determination of rate constants

Table S3. Rate constants and quantum efficiencies of AcPYM and PxPYM^a).

Emitter	$k_{\rm r}^{\rm S}$	k _d	$k_{\rm ISC}$	<i>k</i> _{RISC}	$k_{\rm nr}{}^{\rm T}$	$\boldsymbol{\varPhi}_{\mathrm{ISC}}$	$\boldsymbol{\Phi}_{\mathrm{RISC}}$
	$[s^{-1}]^{b)}$	$[s^{-1}]^{c)}$	$[s^{-1}]^{d)}$	$[s^{-1}]^{e)}$	$[s^{-1}]^{f)}$	[%] ^{g)}	[%] ^{h)}
AcPYM	2.2×10^{7}	2.1×10^{3}	3.0×10 ⁷	9.0×10 ²	1.7×10^{3}	89.3	11.9
PxPYM	2.4×10^{7}	3.5×10 ³	3.5×10 ⁷	5.3×10 ³	1.3×10 ³	63.3	58.1

^{a)}Measured using 6 wt.% **AcPYM**:PPT and **PxPYM**:PPT co-deposited films. ^{b)}Radiative decay rate constant of S₁ state, $k_r^S = \Phi_p/\tau_p$. ^{c)}Radiative decay rate constant of delayed fluorescence, $k_d = 1/\tau_d$. ^{d)}Radiative decay rate constant of ISC, $k_{ISC} = k_p - k_r^S - k_{nr}^S$, $k_{nr}^S \approx 0$. ^{e)}Radiative decay rate constant of RISC, $k_{RISC} = (k_p \times k_d \times \Phi_d)/(k_{ISC} \times \Phi_p)$. ^{f)}Non-radiative decay rate constant of T₁ state, $k_{nr}^T = k_d - (\Phi_p \times k_{RISC})$. ^{g)}Efficiency of ISC, $\Phi_{ISC} = 1 - \Phi_p$. ^{h)}Efficiency of RISC, $\Phi_{RISC} = \Phi_d/\Phi_{ISC}$.