Supporting Information

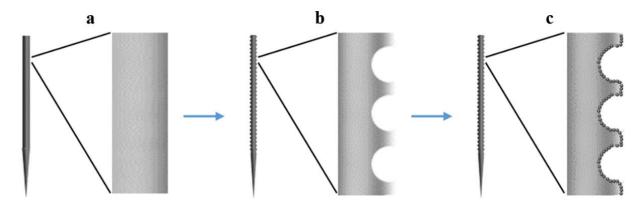
Noble Metal Sensitized Invasive Porous Bioelectrodes: Advanced Medical Device for Enhanced Neuronal Activity and Chronic Alcohol Treatment

Hong Soo Kim, ‡^a Hansaem Choi, ‡^a Monica Claire Flores, ‡^a Abdul Razzaq, ^b Young Seob Gwak, ^c Danbi Ahn, ^c Mi Seon Kim, ^d Ogan Gurel, ^e Bong Hyo Lee *^f and Su-II In*^a

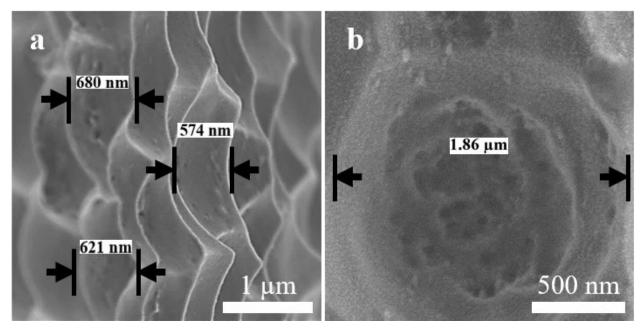
^a Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.

^b Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, 1.5 KM Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan.

^c Department of Physiology, College of Korean Medicine, Daegu Haany University, 136 Sincheondong-ro, Suseong-gu, Daegu, 42158, Republic of Korea.


^d Clinical Trials Management Division, Pharmaceutical Safety Bureau, Ministry of Food and Drug Safety, Cheongju-si, Chungcheongbuk-do, Republic of Korea.

^e College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.


^f Department of Acupuncture, Moxibustion, and Acupoint, College of Korean Medicine, Daegu Haany University, 136 Sincheondong-ro, Suseong-gu, Daegu, 42158, Republic of Korea.

* Correspondence should be addressed to B. H. L (e-mail: dlqhdgy@dhu.ac.kr) and S.-I. In (e-mail: insuil@dgist.ac.kr)

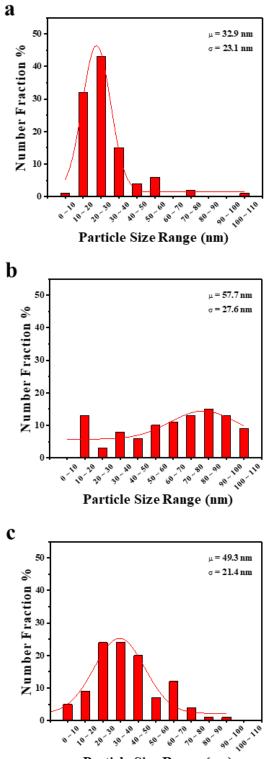

‡ These authors contributed equally to this work.

Fig. S1. Invasive bioelectrode surface modification strategy: (a) An invasive conventional bioelectrode (ICB), (b) An invasive porous bioelectrode (IPB) is formed by electrochemical anodization of ICB in a fluorine-based ethylene glycol electrolyte, and (c) Noble metal nanoparticles are electrodeposited on surface of IPB.

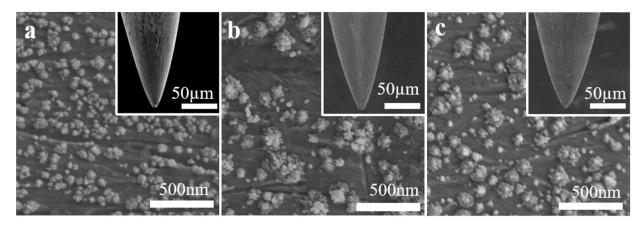
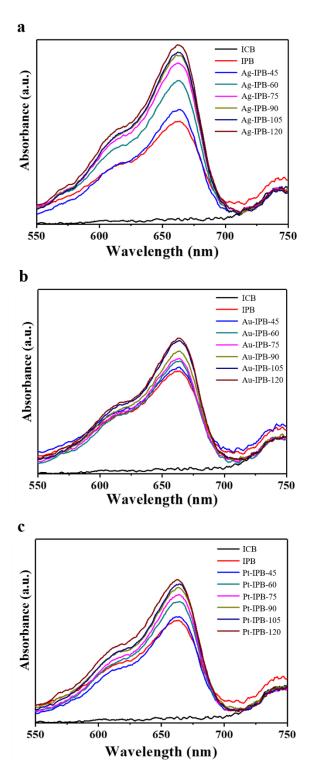
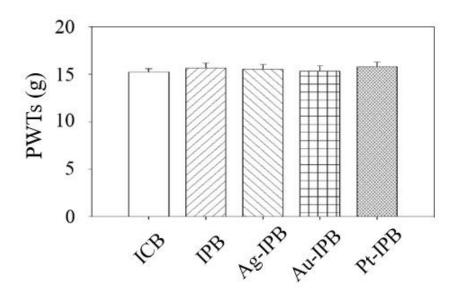


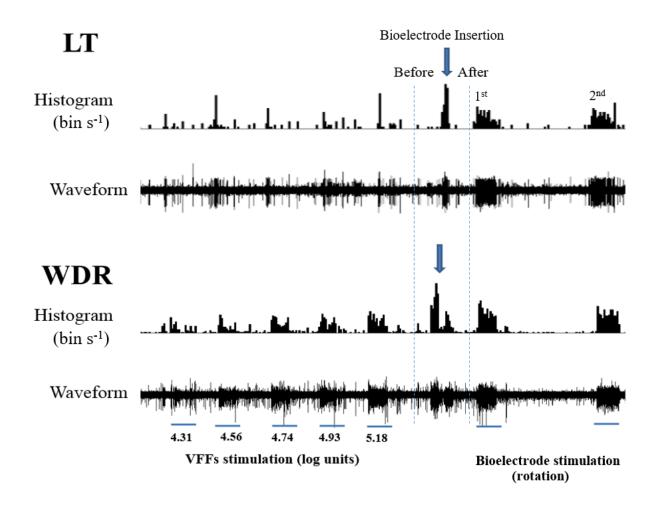
Fig. S2. High resolution FE-SEM images of invasive porous bioelectrode (IPB) showing: (a) cross-sectional image and (b) surface pore.



Particle Size Range (nm)

Fig. S3. Histograms showing size distribution of nanoparticles electrodeposited on invasive porous bioelectrode (IPB): (a) Ag, (b) Au and (c) Pt.


Fig. S4. FE-SEM surface images of nanoparticles electrodeposited onto invasive conventional bioelectrode (ICB): (a) Ag-ICB, (b) Au-ICB and (c) Pt-ICB. Inset shows tips of bioelectrodes.


Fig. S5. Absorption spectra for methylene blue dye adsorbed on ICB, IPB, *x*-IPB with different electrodeposition times: (a) Ag-IPB, (b) Au-IPB and (c) Pt-IPB.

Sample	ICB	IPB	x-IPB-	x-IPB-	x-IPB-	x-IPB-	x-IPB-	x-IPB-
			45	60	75	90	105	120
Deposition	-	-	2 V	2 V	2 V	2 V	2 V	2 V
Conditions			45 s	60 s	75 s	90 s	105 s	120 s
Surface			Ag: 1.17	Ag: 1.40	Ag: 1.49	Ag: 1.55	Ag: 1.57	Ag: 1.64
Area (m ² g ⁻¹)	0.04	1.03	Au: 1.06	Au: 1.16	Au: 1.18	Au: 1.29	Au: 1.36	Au: 1.38
			Pt: 1.07	Pt: 1.24	Pt: 1.30	Pt: 1.36	Pt: 1.38	Pt: 1.41

Table S1. Surface areas determined by methylene blue dye adsorption for ICB, IPB, and *x*-IPB (x = Ag, Au and Pt) with different electrodeposition times.

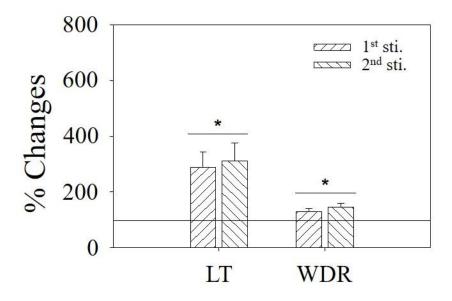
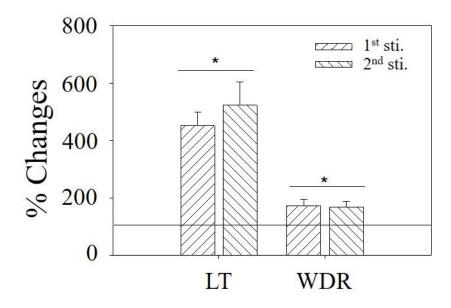


Fig. S6. Mechanical sensitivity in the paw withdrawal thresholds (PWTs) among ICB, IPB and *x*-IPB (where x = Ag, Au and Pt) groups before stimulation.


Fig. S7. Characterization of spinal dorsal horn neuronal phenotype and their response activity using invasive conventional bioelectrode.

Explanation: LT neurons (upper) showed strong response activity at only the initial mechanical stimulation, whereas WDR neurons (lower) showed strong activity during the VFFs stimulation. Arrow: the responses to bioelectrode insertion. Comparison of the response before and after bioelectrode insertion indicates no significant difference. Bar: Bioelectrode stimulation for 10 s; manual stimulation with rotation (rotation per second). 1st and 2nd indicate sequential 10 s bioelectrode stimulations.

Fig. S8. Changes of neuronal responsiveness to stimulation for invasive conventional bioelectrode (ICB) groups.

Explanation: The activity of LT neurons (n = 26) with bioelectrode stimulation was 288.2 ± 56.5 % (1st bioelectrode stimulation) and 312.5 ± 63.9 % (2nd bioelectrode stimulation), showing a significant increase as compared to before stimulation (*p < 0.05). The activity of WDR neurons (n = 23) shows 129.1 ± 12.8 % (1st) and 146.6 ± 13.5 % (2nd). The comparison between 1st and 2nd stimulation does not show any significant changes. Horizontal line: 100 % of activity induced by VFFs stimulation.

Fig. S9. Changes of neuronal responsiveness to stimulation for invasive porous bioelectrode (IPB) groups.

Explanation: The activity of LT neurons (n = 14) with bioelectrode stimulation was $451.8 \pm 46.4 \%$ (1st bioelectrode stimulation) and $522.8 \pm 82 \%$ (2nd bioelectrode stimulation), which shows a significant increase as compared to before stimulation (*p < 0.05). The activity of WDR neurons (n = 10) with bioelectrode stimulation was $173.6 \pm 20.6 \%$ (1st) and $168.1 \pm 20.8 \%$ (2nd) and also shows a significant increase (*p < 0.05). Comparison between 1st and 2nd stimulations shows little variation. Horizontal line: 100 % of activity induced by VFFs stimulation.

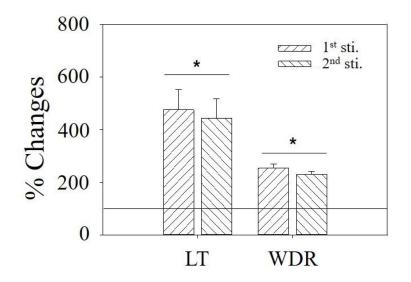


Fig. S10. Changes of neuronal responsiveness to stimulation in Ag-IPB groups.

Explanation: The activity of LT neurons (n = 14) with bioelectrode stimulation was 475.4 ± 77.5 % (1st bioelectrode stimulation) and 443.6 ± 74.2 % (2nd bioelectrode stimulation), thus showing a significant increase as compared to before stimulation (*p < 0.05). In addition, the activity of WDR neurons (n = 13) with bioelectrode stimulation was 253.6 ± 16.2 % (1st) and 230.7 ± 10.7 % (2nd), showing a significant increase (*p < 0.05). However, the comparison between the 1st and 2nd stimulations does not show a significant change. Horizontal line: 100 % of activity induced by VFFs stimulation.

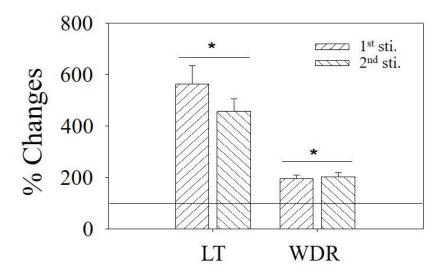


Fig. S11. Changes of neuronal responsiveness to stimulation in Au-IPB groups.

Explanation: The activity of LT neurons (n = 13) with bioelectrode stimulation is 562.9 ± 72.4 % (1st bioelectrode stimulation) and 457.1 ± 49.5 % (2nd bioelectrode stimulation), thus showing a significant increase as compared to before stimulation (*p < 0.05). In addition, the activity of WDR neurons (n = 15) with bioelectrode stimulation is 195.4 ± 13.2 % (1st) and 203.1 ± 14.8 % (2nd), thus displaying a significant increase (*p < 0.05). However, the comparison between 1st and 2nd does not show significant changes. Horizontal line: 100 % of activity induced by VFFs stimulation.

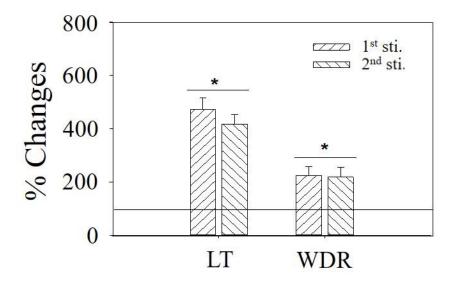


Fig. S12. Changes of neuronal responsiveness to stimulation in Pt-IPB groups.

Explanation: The activity of LT neurons (n = 14) with bioelectrode stimulation was 472.9 ± 42.7 % (1st bioelectrode stimulation) and 418.1 ± 36.35 % (2nd bioelectrode stimulation), showing a significant increase as compared to before stimulation (*p < 0.05). Moreover, the activity of WDR neurons (n = 12) with bioelectrode stimulation was 223.9 ± 33.8 % (1st) and 218.5 ± 36.1 % (2nd), which also exhibits a significant increase (*p < 0.05). However, the comparison between the 1st and 2nd stimulations does not show significant changes. Horizontal line: 100 % of activity induced by VFFs stimulation.