Zero-field Slow Relaxation of Magnetization in Cobalt(II) Single-ion Magnets: Suppression of Quantum Tunneling of Magnetization by Tailoring the Intermolecular Magnetic Coupling

Ryoji Mitsuhashi,^a* Satoshi Hosoya,^b Takayoshi Suzuki^{c,d}, Yukinari Sunatsuki,^c Hiroshi Sakiyama,^e and Masahiro Mikuriya^b

- ^a Institute of Liberal Arts and Science, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
- ^b School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
- ^c Department of Chemistry, Faculty of Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
- ^d Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
- ^e Department of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan

Contents:

1. X-Ray crystallography

 Table S1 Crystallographic information.

Table S2. Selected bond distances and angles of Co complexes (Å, °).

Table S3. Selected crystallographic information of the Zn analogues.

Table S4. Selected bond distances, angles, and dihedral angles of Zn Complexes (Å, °).

Table S5 Intrachain and the shortest interchain $M \cdots M$ distances (Å).

Table S6 Hydrogen-bond distances (Å) and angles (°).

2. Magnetic measurements.

Fig. S1 Temperature dependence of the $\chi_M T$ product for (a) $1 \cdot \text{CH}_3\text{OH}$, (c) **2** and (e) **3** in an applied field of 5.0 kOe. Field dependence of the magnetization for (b) $1 \cdot \text{CH}_3\text{OH}$, (d) **2** and (f) **3** at 2, 4, 6 and 8 K (red green blue and magenta points, respectively).

Fig. S2 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for 1·CH₃OH at 1.9 K with ac frequency of 0.1–1488 Hz. The lines are a guide for the eye.

Fig. S3 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for 1·CH₃OH in 1.4 kOe dc field with ac frequency of 0.1– 1488 Hz. The lines are a guide for the eye.

Fig. S4 Cole-Cole plot for $1 \cdot CH_3OH$ in 1.4 kOe dc field from 1.9 to 6.5 K. The solid lines represent the fit to a generalized Debye model.

Table S7 Cole-Cole fit values for 1 · CH₃OH in 1.4 kOe dc field from 1.9 to 6.5 K.

Fig. S5 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **2** in 0 Oe dc field with ac frequency of 0.1–1488 Hz (1.9 K–8.0 K). The lines are a guide for the eye.

Fig. S6 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **2** with ac frequency of 0.1–148.8 Hz at 1.9 K. The lines are a guide for the eye.

Fig. S7 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **2** in 0.4 kOe dc field with ac frequency of 0.1–1488 Hz (1.9 K–8.0 K). The lines are a guide for the eye. The lines are a guide for the eye.

Fig. S8 Cole-Cole plot for **2** (a) in zero field and (b) in 0.4 kOe dc field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

Table S8 Cole-Cole fit values for 2 in zero dc field from 1.9 to 8.0 K.

Table S9 Cole-Cole fit values for 2 in 0.4 kOe dc field from 1.9 to 8.0 K.

Fig. S9 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **3** in 0 Oe dc field with ac frequency of 1–1488 Hz (1.9 K– 8.0 K). The lines are a guide for the eye.

Fig. S10 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **3** with ac frequency of 0.1–1488 Hz at 4 K. The lines are a guide for the eye.

Fig. S11 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **3** in 0.8 kOe dc field with ac frequency of 0.03–1488 Hz (2.8 K–8.0 K). The lines are a guide for the eye.

Fig. S12 Cole-Cole plot for **3** (a) in zero field and (b) in 0.8 kOe dc field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

Table S10 Cole-Cole fit values for 3 in zero dc field from 1.9 to 8.0 K.

Table S11 Cole-Cole fit values for 3 in 0.8 kOe dc field from 2.8 to 8.0 K.

Fig. S13 Cole-Cole plot for **3** under 0.2–5.0 kOe. The solid lines represent the fit to a generalized Debye model.

Table S12 Cole-Cole fit values for **3** at 4 K with an applied dc field of 0.2 to 5.0 kOe.

Fig. S14 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for 4·CH₃OH in 0 Oe dc field with ac frequency of 1–1488 Hz (1.9 K–6.0 K). The lines are a guide for the eye.

Fig. S15 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for 4·CH₃OH with ac frequency of 1–1488 Hz at 3.4 K. The lines are a guide for the eye. **Fig. S16** Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for 4·CH₃OH in 0.4 kOe dc field with ac frequency of 1–1488 Hz (1.9 K–6.0 K). The lines are a guide for the eye.

Fig. S17 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for 4·CH₃OH in 1.8 kOe dc field with ac frequency of 0.1– 1488 Hz (1.9 K–7.0 K). The lines are a guide for the eye.

Fig. S18 Cole-Cole plot for **4**·CH₃OH (a) in zero field from 1.9 to 6 K, (b) in 0.4 kOe dc field from 1.9 to 6 K and (c) in 1.8 Oe dc field from 1.9 to 7 K. The solid lines represent the fit to a generalized Debye model.

Table S13 Cole-Cole fit values for 4 ·CH₃OH in zero dc field from 1.9 to 6.0 K.

Table S14 Cole-Cole fit values for 4 CH₃OH in 0.4 kOe dc field from 1.9 to 6.0 K.

Table S15 Cole-Cole fit values for 4 CH₃OH in 1.8 kOe dc field from 1.9 to 7.0 K.

Fig. S19 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **1'**_{0.33}·CH₃OH in 0 kOe dc field with ac frequency of 1– 1488 Hz (1.9 K–2.6 K). The lines are a guide for the eye.

Fig. S20 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **1'**_{0.33}·CH₃OH in 1.4 kOe dc field with ac frequency of 0.1–1488 Hz. The lines are a guide for the eye.

Fig. S21 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **1'**_{0.33}·CH₃OH with ac frequency of 1–1488 Hz at 5.5 K. The lines are a guide for the eye.

Fig. S22 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for $1'_{0.12}$ ·CH₃OH in 0 kOe dc field with ac frequency of 1– 1488 Hz (1.9 K–2.6 K). The lines are a guide for the eye.

Fig. S23 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **1'**_{0.12}·CH₃OH in 1.4 kOe dc field with ac frequency of 0.1–1488 Hz. The lines are a guide for the eye.

Fig. S24 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **1**'_{0.12}·CH₃OH with ac frequency of 1–1488 Hz at 5.5 K. The lines are a guide for the eye.

Fig. S25 Cole-Cole plot for (a) $1'_{0.33}$ ·CH₃OH and (b) $1'_{0.12}$ ·CH₃OH in 1.4 kOe dc field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

 Table S16 Cole-Cole fit values for 1'0.33 · CH3OH in 1.4 kOe dc field from 1.9 to 7.5 K.

 Table S17 Cole-Cole fit values for 1'0.12 ·CH₃OH in 1.4 kOe dc field from 1.9 to 8.0 K.

Fig. S26 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **2'**_{0.52} in 0 kOe dc field with ac frequency of 0.03–1488 Hz (1.9 K–8.0 K). The lines are a guide for the eye.

Fig. S27 Cole-Cole plot for $2'_{0.52}$ in zero field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

Table S18 Cole-Cole fit values for 2'_{0.52} in zero dc field from 1.9 to 8.0 K.

Fig. S28 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **3'**_{0.67} in 0 kOe dc field with ac frequency of 0.03–1488 Hz (2.8 K–8.0 K). The lines are a guide for the eye.

Fig. S29 Cole-Cole plot for **3'**_{0.67} in zero field from 2.8 to 8 K. The solid lines represent the fit to a generalized Debye model.

Table S19 Cole-Cole fit values for 3'_{0.67} in zero dc field from 2.8 to 8.0 K.

Fig. S30 Temperature dependence of the relaxation time τ for 1·CH₃OH, 1'_{0.33}·CH₃OH and 1'_{0.12}·CH₃OH under 1.4 kOe dc field. The dashed lines indicate fitted lines for a single relaxation process of Raman $\tau^{-1} = CT^n$ and phonon-bottleneck limited direct process $\tau^{-1} = A_{pb}T^2$. The solid lines indicate the sum of the two relaxation processes.

Fig. 31 Field dependence of the relaxation time τ for **3** at 4.0 K. The dashed lines indicate fitted lines for a single relaxation process of QTM $\tau^{-1} = B_1/(1+B_2H^2)$, Raman $\tau^{-1} = CT^n$ and direct process $\tau^{-1} = ATH^4$. The solid lines indicate the sum of the two relaxation processes. **Table S20** Fitting parameters for the relaxation dynamics in **1**·CH₃OH, **1**'_{0.33}·CH₃OH and **1**'_{0.12}·CH₃OH.

Table S21 Fitting parameters for the relaxation dynamics in 2 and 2'0.52.

Table S22 Fitting parameters for the relaxation dynamics in 3 and 3'0.67.

Table S23 Fitting parameters for the relaxation dynamics in 4 · CH₃OH.

3. Powder X-ray diffraction measurement.

Fig. S32 Powder XRD patterns of $1 \cdot CH_3OH$, $1'_{0.12} \cdot CH_3OH$, $1'_{0.33} \cdot CH_3OH$ and the simulated pattern of $[Zn(Himl)_2] \cdot CH_3OH$ at room temperature.

Fig. S33 Powder XRD patterns of **2**, and **2'**_{0.52} at room temperature, and the simulated pattern of [Zn(Himn)₂] at 90 K.

Fig. S34 Powder XRD patterns of 3 and $3'_{0.67}$ at room temperature, and the simulated patterns of $[Zn(Hthp)_2]$ at 90 K.

1. X-ray crystallography

Table S1. Crystal	llographic information.
-------------------	-------------------------

Complex	1 · CH ₃ OH	2	3	4·CH ₃ OH
Chemical formula	$C_{19}H_{18}CoN_4O_3$	$C_{18}H_{18}CoN_4O_2$	$C_{20}H_{22}CoN_4O_2$	$C_{21}H_{26}CoN_4O_5$
Formula weight	409.30	381.29	409.34	473.39
Color and shape of crystal	red, needle	red, prism	red, platelet	red, platelet
Size of specimen (mm ³)	$0.36 \times 0.12 \times 0.12$	$0.45 \times 0.20 \times 0.20$	$0.30 \times 0.30 \times 0.20$	$0.14 \times 0.12 \times 0.06$
Crystal system	orthorhombic	monoclinic	monoclinic	monoclinic
Space group	Pbca	$P2_{1}/n$	C2/c	$P2_{1}/c$
<i>a</i> / Å	9.6795(11)	11.9830(19)	13.789(3)	14.6617(18)
b / Å	14.4187(16)	7.6704(13)	11.399(3)	19.303(3)
<i>c</i> / Å	25.494(3)	18.692(3)	12.212(3)	7.5546(9)
β/°		105.227(2)	116.361(4)	104.276(3)
V / Å ³	3558.1(7)	1657.8(5)	1720.0(7)	2072.1(5)
Ζ	8	4	4	4
$T / {f K}$	90(2)	90(2)	90(2)	90(2)
$D_{ m calc}/~{ m g~cm^{-3}}$	1.528	1.528	1.581	1.517
F (000)	1688	788	852	988
μ (Mo-K $_a$) / mm $^{-1}$	0.993	1.055	1.023	0.870
$R_{ m int}$	0.0382	0.0378	0.0367	0.1195
$2 heta_{ m max}$ / °	57	57	57	55
No. of independent	4417	2076	2101	4730
reflection	441/	3970	2101	
$R_1(F^2: F_o^2 > 2s(F_o^2))$	0.0363	0.0419	0.0403	0.0651
wR_2 (F^2 : all data)	0.0946	0.1006	0.1231	0.1515

 $R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|, wR_{2} = [\Sigma (F_{o}^{2} - F_{c}^{2}) / \Sigma w (F_{o}^{2})^{2}]^{1/2}$

	1 · CH ₃ OH	2	3	4 · CH ₃ OH
Co-O	1.9220(13)	1.9389(16)	1.9184(17)	1.926(3)
	1.9309(13)	1.9357(16)		1.922(3)
Co–N	1.9776(15)	1.9593(18)	1.9551(19)	1.955(3)
	1.9566(16)	1.9586(18)		1.958(3)
ОСоО	118.68(6)	109.91(7)	108.84(10)	115.35(13)
N-Co-N	126.70(6)	126.30(8)	125.99(11)	126.85(15)
D–Co–N (bite angle)	93.11(6)	93.56(7)	96.93(7)	93.60(14)
	94.67(6)	94.25(7)		93.63(14)
D–Co–N (inter ligand)	109.50(6)	113.33(7)	114.06(8)	108.20(13)
	116.15(6)	120.02(7)		120.18(14)

Complex	[Zn(Himl) ₂]·CH ₃ OH ¹	$[Zn(Himn)_2]^2$	$[Zn(Hthp)_2]^3$
Chemical formula	$C_{19}H_{18}N_4O_3Zn$	$C_{18}H_{18}N_4O_2Zn$	$C_{20}H_{22}N_4O_2Zn$
Formula weight	415.74	387.73	415.78
Crystal system	orthorhombic	monoclinic	monoclinic
Space group	Pbca	$P2_{1}/n$	C2/c
<i>a</i> / Å	9.6943(19)	12.0318(15)	13.7667(14)
<i>b</i> / Å	14.77g(16)	7.6706(10)	11.4666(11)
<i>c</i> / Å	25.494(3)	18.617(2)	12.2213(12)
β/°		105.089(2)	116.242(2)
$V/\text{\AA}^3$	3680.1(13)	1658.9(4)	1730.4(3)
Ζ	8	4	4
T/K	293(2)	90(2)	90(2)
$D_{ m calc}$ / g cm $^{-3}$	1.501	1.552	1.596
CCDC number	627785	1882004	1893923

Table S3. Selected crystallographic information of the Zn analogues.

Table S4. Selected bond distances, angles, and dihedral angles of Zn Complexes (Å, °).

$[Zn(Himl)_2] \cdot CH_3OH^{-1}$	$[Zn(Himn)_2]^2$	$[Zn(Hthp)_2]^3$
1.926(6)	1.952(2)	1.9229(16)
1.937(6)	1.9366(19)	
1.950(7)	1.951(2)	1.9526(19)
1.928(7)	1.952(2)	
113.9(3)	107.72(8)	106.98(10)
128.2(3)	127.66(10)	124.53(11)
94.0(3)	94.61(9)	98.48(7)
115.1(3)	118.36(9)	113.97(7)
110.9(3)	112.84(9)	
95.8(3)	95.37(9)	
	1.926(6) 1.937(6) 1.950(7) 1.928(7) 113.9(3) 128.2(3) 94.0(3) 115.1(3) 110.9(3) 95.8(3)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Symmetry code: (i = -x+1, y, -z+3/2)

Table S5 Intrachain and the shortest interchain M…M distances (Å).

	Intrack	nain	Intere		Interchain		
2	Co1	Co1 ⁱ	6.048(1)	Co1	Co1 ⁱⁱⁱ	7.6704(13)	
	Co1	Co1 ⁱⁱ	6.254(1)				
[Zn(Himn) ₂]	Zn1	$Zn1^{i}$	6.103(1)	Zn1	Zn1 ⁱⁱⁱ	7.671(1)	
	Zn1	Zn ⁱⁱ	6.298(1)				
3	Co1	Co1 ⁱ	6.359(2)	Co1	Co1 ^{iv}	7.927(2)	
[Zn(Hthp) ₂]	Zn1	$Zn1^{i}$	6.372(1)	Zn1	Zn1 ^{iv}	7.934(1)	
4	Co1	Co1 ⁱ	6.115(1)	Co1	Co1 ^{vi}	7.5546(9)	
	Co1	Co1 ^v	8.680(1)				

Symmetry code: (i = '-x+1, -y+1, -z+1', ii = '-x, -y+1, -z+1', iii = 'x, y+1, z', iv = '-x+3/2, y+1/2, -z+3/2', v = '-x, -y, -z', vi = 'x, y, z+1').

¹ H.-S. He, Acta Crystallogr. Sect. E Struct. Reports Online, 2006, **62**, m3042–m3043.

² R. Mitsuhashi and M. Mikuriya, *X-ray Struct. Anal. Online*, 2019, **35**, 15–16.

³ R. Mitsuhashi and M. Mikuriya, X-ray Struct. Anal. Online, 2019, 35, 37–38.

	D	Н	А	D–H	H···A	D····A	D–H…A
1·CH ₃ OH	N1	H1	O2 ⁱ	0.86(3)	1.95(3)	2.766(2)	156(2)
	O3	H3M	O1	0.84	1.81	2.6483(19)	171.7
	N3	H3A	O3 ⁱⁱ	0.83(3)	1.94(3)	2.752(2)	164(2)
[Zn(Himl) ₂]·CH ₃ OH ^{Er} ror! Bookmark not defined.	N1	H1	O2 ⁱ	0.81(10)	2.01(10)	2.770(10)	157(10)
	O3	H3M	O1	0.82	1.88	2.653(10)	157
	N3	H3A	O3 ⁱⁱ	0.75(9)	2.09(10)	2.771(11)	152(11)
2	N1	H1	O2 ⁱⁱⁱ	0.84(3)	2.03(3)	2.845(3)	164(3)
	N3	H3A	O1 ⁱⁱ	0.83(3)	2.03(3)	2.844(2)	165(2)
[Zn(Himn)2] ^{Error!} B ookmark not defined.	N1	H1	O2 ^{iv}	0.75(3)	2.12(3)	2.832(2)	158(3)
	N3	H3A	O1 ⁱⁱ	0.85(3)	2.00(3)	2.828(3)	167(3)
3	N1	H1N	O1 ^v	0.81(3)	2.29(3)	3.059(3)	158(3)
[Zn(Hthp)2] ^{Error!} B ookmark not defined.	N1	H1N	O1 ^{vi}	0.88(4)	2.20(4)	3.035(3)	157(3)
4·CH ₃ OH	N1	H1	O5 ⁱⁱⁱ	0.85(4)	2.03(4)	2.853(5)	162(4)
	N3	H3N	O1 ⁱⁱⁱ	0.795(19)	2.25(4)	2.927(5)	143(5)
	05	H5A	O3	0.84	1.95	2.758(4)	161.3
	05	H5A	O4	0.84	2.47	2.943(4)	116.4

Table S6 Hydrogen-bond distances (Å) and angles (°).

Symmetry code: (i = 'x-1/2, y, -z+3/2 '; ii = '1-x, 1-y, 1-z'; iii = '-x, -y+1, -z+1'; iv = '2-x, 1-y, 1-z' v = 'x, -y+1,

z-1/2 '; vi = x, -y+1, z+1/2 ').

2. Magnetic measurements.

Magnetic susceptibility measurements were performed with a MPMS-XL7 or MPMS-7 SQUID magnetometer. Susceptibility data were obtained in the temperature range from 1.9 to 300 K with static field of 0.5 T. The polycrystalline samples were ground into fine powders by an agate mortar. The samples were loaded into a gelatin capsule and covered in liquid paraffin to prevent field-induced orientation of crystals. All data were corrected for diamagnetism of the sample by means of Pascal's constants. The dynamic susceptibility was measured with alternating-current (ac) fields of 3 Oe magnitude and a constant direct current (dc) field of 0–5000 Oe in the frequency range from 0.03 to 1500 Hz.

Fig. S1 Temperature dependence of the $\chi_M T$ product for (a) 1·CH₃OH, (c) 2 and (e) 3 in an applied field of 5.0 kOe. Field dependence of the magnetization for (b) 1·CH₃OH, (d) 2 and (f) 3 at 2, 4, 6 and 8 K (red green blue and magenta points, respectively).

Ac susceptibility measurements for 1·CH₃OH

Fig. S2 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **1**·CH₃OH at 1.9 K with ac frequency of 0.1–1488 Hz. The lines are a guide for the eye.

Fig. S3 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for 1·CH₃OH in 1.4 kOe dc field with ac frequency of 0.1–1488 Hz. The lines are a guide for the eye.

Fig. S4 Cole-Cole plot for $1 \cdot CH_3OH$ in 1.4 kOe dc field from 1.9 to 6.5 K. The solid lines represent the fit to a generalized Debye model.

T/K	$\chi_S/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	$\chi_T / \mathrm{cm}_3 \mathrm{mol}^{-1}$	τ / s	α
1.9	0.2689	0.8975	1.26×10^{-1}	0.132
2.0	0.2553	0.8573	1.15×10^{-1}	0.129
2.1	0.2425	0.8188	1.05×10^{-1}	0.126
2.2	0.2324	0.8103	1.03×10^{-1}	0.146
2.3	0.2211	0.7721	9.16×10 ⁻²	0.140
2.4	0.2115	0.7387	8.22×10 ⁻²	0.135
2.5	0.2029	0.7093	7.35×10^{-2}	0.129
2.6	0.1950	0.6836	6.59×10^{-2}	0.125
2.7	0.1879	0.6591	5.86×10^{-2}	0.120
2.8	0.1815	0.6357	5.19×10 ⁻²	0.113
2.9	0.1751	0.6151	4.56×10 ⁻²	0.108
3.0	0.1696	0.5948	3.98×10^{-2}	0.101
3.2	0.1591	0.5585	2.97×10 ⁻²	0.087
3.4	0.1501	0.5262	2.17×10^{-2}	0.073
3.6	0.1422	0.4983	1.57×10^{-2}	0.061
4.0	0.1285	0.4517	8.08×10^{-3}	0.043
4.5	0.1145	0.4044	3.57×10^{-3}	0.029
5.0	0.1029	0.3673	1.67×10^{-3}	0.022
5.5	0.0922	0.3368	8.21×10^{-4}	0.021
6.0	0.0848	0.3111	4.29×10 ⁻⁴	0.014
6.5	0.0755	0.2892	2.26×10 ⁻⁴	0.016

Table S7 Cole-Cole fit values for 1 ·CH₃OH in 1.4 kOe dc field from 1.9 to 6.5 K.

Ac susceptibility measurements for 2.

Fig. S5 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **2** in 0 Oe dc field with ac frequency of 0.1–1488 Hz (1.9 K–8.0 K). The lines are a guide for the eye.

Fig. S6 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for 2 with ac frequency of 0.1–148.8 Hz at 1.9 K. The lines are a guide for the eye.

Fig. S7 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **2** in 0.4 kOe dc field with ac frequency of 0.1–1488 Hz (1.9 K–8.0 K). The lines are a guide for the eye. The lines are a guide for the eye.

Fig. S8 Cole-Cole plot for **2** (a) in zero field and (b) in 0.4 kOe dc field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

T/K	$\chi_S/ m cm_3 mol^{-1}$	$\chi_T / \mathrm{cm}_3 \mathrm{mol}^{-1}$	au / s	α
1.9	0.2166	0.8411	4.45×10^{-1}	0.249
2.0	0.2078	0.8027	4.08×10^{-1}	0.235
2.1	0.2003	0.7659	3.63×10^{-1}	0.213
2.2	0.1948	0.7407	3.30×10^{-1}	0.200
2.3	0.1876	0.7028	2.74×10^{-1}	0.172
2.4	0.1816	0.6732	2.29×10^{-1}	0.148
2.5	0.1751	0.6493	1.89×10^{-1}	0.131
2.6	0.1707	0.6224	1.52×10^{-1}	0.107
2.7	0.1650	0.6021	1.22×10^{-1}	0.094
2.8	0.1591	0.5829	9.76×10 ⁻²	0.081
2.9	0.1543	0.5640	7.79×10^{-2}	0.069
3.0	0.1499	0.5486	6.24×10^{-2}	0.061
3.1	0.1466	0.5348	5.00×10 ⁻²	0.057
3.2	0.1430	0.5209	4.01×10^{-2}	0.051
3.4	0.1296	0.5023	2.65×10 ⁻²	0.070
3.6	0.1234	0.4771	1.76×10^{-2}	0.060
3.8	0.1184	0.4561	1.21×10^{-2}	0.053
4.0	0.1141	0.4373	8.49×10 ⁻³	0.049
4.5	0.1048	0.3978	3.92×10 ⁻³	0.044
5.0	0.0976	0.3641	2.04×10 ⁻³	0.038
5.5	0.0911	0.3351	1.16×10 ⁻³	0.030
6.0	0.0833	0.3081	7.04×10 ⁻⁴	0.026
6.5	0.0771	0.2853	4.41×10^{-4}	0.016
7.0	0.0686	0.2654	2.70×10^{-4}	0.017
7.5	0.0605	0.2485	1.60×10^{-4}	0.015
8.0	0.0522	0.2331	8.92×10 ⁻⁵	0.010

 Table S8 Cole-Cole fit values for 2 in zero dc field from 1.9 to 8.0 K.

T/K	$\chi_S/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	$\chi_T/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	τ / s	α
1.9	0.1747	0.9610	1.17×10^{0}	0.399
2.0	0.1693	0.9159	9.68×10 ⁻¹	0.370
2.1	0.1650	0.8352	7.04×10^{-1}	0.330
2.2	0.1631	0.7879	5.48×10 ⁻¹	0.289
2.3	0.1579	0.7319	3.98×10^{-1}	0.240
2.4	0.1537	0.6897	3.00×10^{-1}	0.199
2.6	0.1441	0.6269	1.75×10^{-1}	0.138
2.8	0.1343	0.5812	1.04×10^{-1}	0.100
3.0	0.1254	0.5447	6.31×10 ⁻²	0.077
3.2	0.1172	0.5149	3.94×10 ⁻²	0.062
3.4	0.1026	0.4968	2.54×10 ⁻²	0.087
3.6	0.0972	0.4693	1.66×10^{-2}	0.070
3.8	0.0923	0.4465	1.13×10 ⁻²	0.062
4.0	0.0881	0.4264	7.85×10 ⁻³	0.054
4.5	0.0795	0.3834	3.56×10 ⁻³	0.042
5.0	0.0718	0.3500	1.83×10 ⁻³	0.036
5.5	0.0658	0.3220	1.04×10^{-3}	0.032
6.0	0.0599	0.2982	6.23×10 ⁻⁴	0.034
6.5	0.0561	0.2779	3.91×10 ⁻⁴	0.027
7.0	0.0509	0.2601	2.40×10 ⁻⁴	0.024
7.5	0.0459	0.2446	1.43×10 ⁻⁴	0.020
8.0	0.0395	0.2311	8.15×10 ⁻⁵	0.017

Table S9 Cole-Cole fit values for 2 in 0.4 kOe dc field from 1.9 to 8.0 K.

Ac susceptibility measurements for **3**.

Fig. S9 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **3** in 0 Oe dc field with ac frequency of 1–1488 Hz (1.9 K–8.0 K). The lines are a guide for the eye.

Fig. S10 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **3** with ac frequency of 0.1–1488 Hz at 4 K. The lines are a guide for the eye.

Fig. S11 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **3** in 0.8 kOe dc field with ac frequency of 0.03–1488 Hz (2.8 K–8.0 K). The lines are a guide for the eye.

Fig. S12 Cole-Cole plot for **3** (a) in zero field and (b) in 0.8 kOe dc field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

T/K	$\chi_S/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	$\chi_T / \mathrm{cm}_3 \mathrm{mol}^{-1}$	au / s	α
1.9	0.0820	0.5495	4.15×10 ⁻³	0.424
2.0	0.0820	0.5485	4.20×10^{-3}	0.423
2.2	0.0813	0.5506	4.27×10 ⁻³	0.430
2.4	0.0823	0.5554	4.37×10 ⁻³	0.437
2.6	0.0848	0.5611	4.44×10 ⁻³	0.444
2.8	0.0871	0.5671	4.39×10 ⁻³	0.454
3.0	0.0928	0.5704	4.31×10 ⁻³	0.459
3.2	0.0995	0.5700	4.21×10 ⁻³	0.462
3.5	0.1114	0.5645	4.05×10 ⁻³	0.465
4.0	0.1306	0.5466	3.95×10 ⁻³	0.465
4.5	0.1517	0.5157	3.86×10 ⁻³	0.418
5.0	0.1625	0.4777	3.06×10 ⁻³	0.328
5.5	0.1592	0.4416	1.80×10^{-3}	0.237
6.0	0.1453	0.4118	8.46×10^{-4}	0.183
6.5	0.1196	0.3868	3.43×10 ⁻⁴	0.176
7.0	0.0538	0.3659	1.05×10^{-4}	0.238
8.0	0.0000	0.3301	1.12×10^{-5}	0.400

Table S10 Cole-Cole fit values for 3 in zero dc field from 1.9 to 8.0 K.

T/K	$\chi_S/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	$\chi_T / \mathrm{cm}_3 \mathrm{mol}^{-1}$	au / s	α	
2.8	0.0830	0.4132	1.40×10^{0}	0.110	
3.0	0.0702	0.4666	1.51×10^{0}	0.205	
3.2	0.0712	0.4420	1.06×10^{0}	0.161	
3.5	0.0733	0.4093	5.80×10^{-1}	0.099	
4.0	0.0671	0.3785	1.93×10^{-1}	0.074	
4.5	0.0669	0.3495	5.92×10 ⁻²	0.043	
5.0	0.0653	0.3278	1.82×10^{-2}	0.032	
5.5	0.0618	0.3101	5.43×10 ⁻³	0.033	
6.0	0.0609	0.2938	1.68×10^{-3}	0.027	

6.5	0.0583	0.2793	5.50×10 ⁻⁴	0.026
7.0	0.0532	0.2661	1.96×10 ⁻⁴	0.026
8.0	0.0317	0.2426	3.22×10 ⁻⁵	0.038

Fig. S13 Cole-Cole plot for **3** under 0.2–5.0 kOe. The solid lines represent the fit to a generalized Debye model.

H_{dc} / kOe	$\chi_S / \text{ cm}_3 \text{ mol}^{-1}$	$\chi_T / \mathrm{cm}_3 \mathrm{mol}^{-1}$	au / s	α
0.2	0.1228	0.4895	2.48×10 ⁻²	0.54
0.4	0.1200	0.4271	1.40×10^{-1}	0.24
0.6	0.0859	0.3930	1.82×10^{-1}	0.11
0.8	0.0674	0.3774	1.92×10^{-1}	0.07
1.0	0.0570	0.3673	1.90×10^{-1}	0.06
1.2	0.0505	0.3611	1.83×10^{-1}	0.05
1.4	0.0462	0.3567	1.76×10^{-1}	0.05
1.6	0.0434	0.3530	1.68×10^{-1}	0.05
1.8	0.0403	0.3497	1.59×10^{-1}	0.05
2.0	0.0379	0.3496	1.51×10^{-1}	0.06
2.5	0.0341	0.3501	1.30×10^{-1}	0.08
3.0	0.0329	0.3486	1.10×10^{-1}	0.11
3.5	0.0297	0.3478	9.75×10 ⁻²	0.15
4.0	0.0291	0.3474	8.82×10^{-2}	0.18
4.5	0.0303	0.3466	7.30×10 ⁻²	0.20
5.0	0.0411	0.3431	4.85×10 ⁻²	0.22

Table S12 Cole-Cole fit values for 3 at 4 K with an applied dc field of 0.2 to 5.0 kOe.

Ac susceptibility measurements for 4 · CH₃OH.

Fig. S14 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for 4·CH₃OH in 0 Oe dc field with ac frequency of 1–1488 Hz (1.9 K–6.0 K). The lines are a guide for the eye.

Fig. S15 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for 4·CH₃OH with ac frequency of 1–1488 Hz at 3.4 K. The lines are a guide for the eye.

Fig. S16 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for 4·CH₃OH in 0.4 kOe dc field with ac frequency of 1–1488 Hz

(1.9 K–6.0 K). The lines are a guide for the eye.

Fig. S17 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **4**·CH₃OH in 1.8 kOe dc field with ac frequency of 0.1–1488 Hz (1.9 K–7.0 K). The lines are a guide for the eye.

Fig. S18 Cole-Cole plot for $4 \cdot CH_3OH$ (a) in zero field from 1.9 to 6 K, (b) in 0.4 kOe dc field from 1.9 to 6 K and (c) in 1.8 Oe dc field from 1.9 to 7 K. The solid lines represent the fit to a generalized Debye model.

T/K	$\chi_S/ m cm_3 m mol^{-1}$	$\chi_T/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	au / s	α
1.9	0.0694	0.8491	4.40×10 ⁻⁴	0.215
2.0	0.0652	0.8176	4.42×10 ⁻⁴	0.217
2.1	0.0633	0.7876	4.47×10^{-4}	0.217
2.2	0.0651	0.7593	4.54×10 ⁻⁴	0.213
2.3	0.0596	0.7342	4.53×10 ⁻⁴	0.218
2.4	0.0582	0.7102	4.56×10 ⁻⁴	0.216
2.5	0.0574	0.6893	4.60×10 ⁻⁴	0.217
2.6	0.0551	0.6694	4.60×10 ⁻⁴	0.216
2.8	0.0558	0.6322	4.68×10 ⁻⁴	0.214
3.0	0.0533	0.5990	4.68×10 ⁻⁴	0.211
3.2	0.0520	0.5695	4.65×10 ⁻⁴	0.206
3.4	0.0533	0.5429	4.61×10 ⁻⁴	0.197
3.6	0.0534	0.5190	4.51×10 ⁻⁴	0.185
4.0	0.0549	0.4771	4.18×10 ⁻⁴	0.159
4.5	0.0536	0.4335	3.52×10 ⁻⁴	0.126
5.0	0.0519	0.3978	2.85×10^{-4}	0.091
6.0	0.0382	0.3443	1.64×10^{-4}	0.069

Table S13 Cole-Cole fit values for 4 ·CH₃OH in zero dc field from 1.9 to 6.0 K.

Table S14 Cole-Cole fit values for 4. CH₃OH in 0.4 kOe dc field from 1.9 to 6.0 K.

T/K	$\chi_S/ \text{ cm}_3 \text{ mol}^{-1}$	$\chi_T/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	τ / s	α
1.9	0.1150	0.8227	1.29×10^{-3}	0.256
2.0	0.1090	0.7917	1.30×10^{-3}	0.259
2.2	0.1003	0.7443	1.33×10 ⁻³	0.267
2.4	0.0891	0.6968	1.36×10 ⁻³	0.279
2.6	0.0826	0.6604	1.40×10^{-3}	0.285
3.0	0.0780	0.5989	1.45×10^{-3}	0.276
3.5	0.0798	0.5297	1.32×10 ⁻³	0.216
4.0	0.0773	0.4720	1.03×10^{-3}	0.151
4.5	0.0725	0.4254	7.21×10 ⁻⁴	0.098
5.0	0.0665	0.3893	4.94×10 ⁻⁴	0.067
6.0	0.0560	0.3333	2.31×10 ⁻⁴	0.032

Table S15 Cole-Cole fit values for 4·CH₃OH in 1.8 kOe dc field from 1.9 to 7.0 K.

T/K	$\chi_S/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	$\chi_T/ \text{ cm}_3 \text{ mol}^{-1}$	τ / s	α
1.9	0.3931	0.8358	6.50×10 ⁻²	0.161
2.1	0.3532	0.7743	5.68×10 ⁻²	0.152
2.3	0.3240	0.7242	4.82×10^{-2}	0.135
2.6	0.2813	0.6549	3.26×10 ⁻²	0.113
3.0	0.2214	0.5883	1.53×10^{-2}	0.133
3.8	0.1637	0.4765	3.63×10 ⁻³	0.054
4.4	0.1125	0.4258	1.35×10 ⁻³	0.099
5.0	0.0897	0.3843	6.56×10^{-4}	0.083
6.0	0.0598	0.3220	2.38×10 ⁻⁴	0.041
7.0	0.0228	0.2838	9.24×10 ⁻⁵	0.034

i. Some data points in high field at low temperature region were removed from fitting to model with single Debye function.

Ac susceptibility measurements for Zn^{II} -doped samples: 1'_x·CH₃OH.

Fig. S19 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for $1'_{0.33}$ ·CH₃OH in 0 kOe dc field with ac frequency of 1–1488 Hz (1.9 K–2.6 K). The lines are a guide for the eye.

Fig. S20 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **1'**_{0.33}·CH₃OH in 1.4 kOe dc field with ac frequency of 0.1– 1488 Hz. The lines are a guide for the eye.

Fig. S21 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase

 χ "_M vs. frequency plots for **1**'_{0.33}·CH₃OH with ac frequency of 1–1488 Hz at 5.5 K. The lines are a guide for the eye.

Fig. S22 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for $1'_{0.12}$ ·CH₃OH in 0 kOe dc field with ac frequency of 1–1488 Hz (1.9 K–2.6 K). The lines are a guide for the eye.

Fig. S23 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **1'**_{0.12}·CH₃OH in 1.4 kOe dc field with ac frequency of 0.1– 1488 Hz. The lines are a guide for the eye.

Fig. S24 Dc field dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-of-phase χ''_M vs. frequency plots for **1'**_{0.12}·CH₃OH with ac frequency of 1–1488 Hz at 5.5 K. The lines are a guide for the eye.

Fig. S25 Cole-Cole plot for (a) **1'**_{0.33}·CH₃OH and (b) **1'**_{0.12}·CH₃OH in 1.4 kOe dc field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

T / K	$\chi_S/ m cm_3 m mol^{-1}$	$\chi_T/ \text{ cm}_3 \text{ mol}^{-1}$	au / s	α
1.9	0.1244	1.0291	3.34×10^{-1}	0.078
2.0	0.1185	0.9909	3.06×10 ⁻¹	0.084
2.1	0.1130	0.9478	2.74×10^{-1}	0.083
2.2	0.1096	0.9175	2.53×10 ⁻¹	0.082
2.3	0.1049	0.8680	2.19×10 ⁻¹	0.076
2.4	0.1018	0.8385	1.94×10^{-1}	0.076
2.5	0.0965	0.8057	1.69×10^{-1}	0.074
2.6	0.0941	0.7755	1.45×10^{-1}	0.070
2.7	0.0917	0.7455	1.24×10^{-1}	0.063
2.8	0.0888	0.7190	1.05×10^{-1}	0.059
3.0	0.0832	0.6726	7.35×10 ⁻²	0.051
3.2	0.0785	0.6306	4.98×10 ⁻²	0.044
3.4	0.0732	0.5957	3.39×10 ⁻²	0.040
3.6	0.0605	0.5686	2.24×10 ⁻²	0.058
3.8	0.0576	0.5379	1.52×10^{-2}	0.047
4.0	0.0545	0.5109	1.03×10 ⁻²	0.041
4.5	0.0480	0.4556	4.17×10 ⁻³	0.029
5.0	0.0432	0.4124	1.88×10^{-3}	0.024
5.5	0.0392	0.3775	9.16×10 ⁻⁴	0.017
6.0	0.0354	0.3475	4.74×10 ⁻⁴	0.017
6.5	0.0305	0.3222	2.56×10 ⁻⁴	0.016
7.0	0.0244	0.3008	1.40×10 ⁻⁴	0.017
7.5	0.0238	0.2820	8.05×10^{-5}	0.016

Table S16 Cole-Cole fit values for 1'0.33 · CH₃OH in 1.4 kOe dc field from 1.9 to 7.5 K.

T/K	$\chi_S/ \text{ cm}_3 \text{ mol}^{-1}$	$\chi_T / \mathrm{cm}_3 \mathrm{mol}^{-1}$	τ / s	α
1.9	0.0613	1.1610	7.85×10^{-1}	0.119
2.0	0.0592	1.0874	6.78×10^{-1}	0.111
2.1	0.0572	1.0368	5.99×10^{-1}	0.108
2.2	0.0562	1.0045	5.45×10^{-1}	0.107
2.3	0.0561	0.9457	4.52×10^{-1}	0.094
2.4	0.0521	0.9014	3.78×10^{-1}	0.086
2.5	0.0509	0.8631	3.13×10^{-1}	0.081
2.6	0.0482	0.8299	2.54×10^{-1}	0.075
2.7	0.0480	0.7975	2.05×10^{-1}	0.067
2.8	0.0461	0.7680	1.64×10^{-1}	0.063
3.0	0.0428	0.7148	1.04×10^{-1}	0.052
3.2	0.0411	0.6695	6.56×10^{-2}	0.043
3.4	0.0382	0.6301	4.17×10 ⁻²	0.039
3.6	0.0315	0.6007	2.69×10^{-2}	0.046
3.8	0.0290	0.5681	1.75×10^{-2}	0.042
4.0	0.0274	0.5401	1.16×10^{-2}	0.037
4.5	0.0243	0.4796	4.55×10 ⁻³	0.026
5.0	0.0226	0.4332	2.01×10 ⁻³	0.013
5.5	0.0210	0.3960	9.75×10 ⁻⁴	0.016
6.0	0.0176	0.3642	4.98×10 ⁻⁴	0.014
6.5	0.0177	0.3382	2.71×10^{-4}	0.020
7.0	0.0186	0.3137	1.48×10^{-4}	0.010
7.5	0.0000	0.2936	7.84×10^{-5}	0.024
8.0	0.0000	0.2766	4.51×10 ⁻⁵	0.022

Table S17 Cole-Cole fit values for 1'_{0.12}·CH₃OH in 1.4 kOe dc field from 1.9 to 8.0 K.

Ac susceptibility measurements for Zn^{II}-doped samples: 2'0.52.

Fig. S26 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **2'**_{0.52} in 0 kOe dc field with ac frequency of 0.03–1488 Hz (1.9 K–8.0 K). The lines are a guide for the eye.

Fig. S27 Cole-Cole plot for **2'**_{0.52} in zero field from 1.9 to 8 K. The solid lines represent the fit to a generalized Debye model.

T/K	$\chi_S/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	$\chi_T / \mathrm{cm}_3 \mathrm{mol}^{-1}$	τ / s	α
1.9	0.1546	0.9800	1.45×10^{0}	0.296
2.0	0.1521	0.9193	1.17×10^{0}	0.256
2.1	0.1496	0.8634	9.08×10^{-1}	0.213
2.2	0.1464	0.8276	7.49×10^{-1}	0.185
2.3	0.1416	0.7811	5.50×10^{-1}	0.147
2.4	0.1365	0.7454	4.14×10^{-1}	0.120
2.6	0.1164	0.7097	2.35×10^{-1}	0.122
2.7	0.1131	0.6810	1.78×10^{-1}	0.103
2.8	0.1082	0.6551	1.33×10^{-1}	0.088
2.9	0.1049	0.6317	1.01×10^{-1}	0.076
3.0	0.1012	0.6114	7.81×10^{-2}	0.069
3.1	0.0976	0.5924	6.07×10^{-2}	0.061
3.2	0.0911	0.5688	4.75×10 ⁻²	0.055
3.4	0.0908	0.5588	3.05×10^{-2}	0.081

Table S18 Cole-Cole fit values for 2'0.52 in zero dc field from 1.9 to 8.0 K.

3.6	0.0857	0.5262	1.97×10 ⁻²	0.069
3.8	0.0806	0.4995	1.32×10^{-2}	0.068
4.0	0.0764	0.4747	9.11×10 ⁻³	0.060
4.5	0.0663	0.4246	4.03×10 ⁻³	0.055
5.0	0.0589	0.3851	2.07×10 ⁻³	0.046
5.5	0.0502	0.3527	1.15×10^{-3}	0.050
6.0	0.0443	0.3250	6.86×10 ⁻⁴	0.044
6.5	0.0376	0.3015	4.21×10 ⁻⁴	0.040
7.0	0.0307	0.2821	2.57×10 ⁻⁴	0.035
7.5	0.0234	0.2639	1.52×10^{-4}	0.020
8.0	0.0170	0.2482	8.90×10^{-5}	0.002

Ac susceptibility measurements for Zn^{II}-doped samples: 3'0.67.

Fig. S28 Temperature dependence of (a) the in-phase χ'_M vs. frequency plots and (b) out-ofphase χ''_M vs. frequency plots for **3'**_{0.67} in 0 kOe dc field with ac frequency of 0.03–1488 Hz (2.8 K–8.0 K). The lines are a guide for the eye.

Fig. S29 Cole-Cole plot for **3'**_{0.67} in zero field from 2.8 to 8 K. The solid lines represent the fit to a generalized Debye model.

T/K	$\chi_S/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	$\chi_T/ \mathrm{cm}_3 \mathrm{mol}^{-1}$	au / s	α
2.8	0.0769	0.5789	1.71×10^{0}	0.459
3.0	0.0782	0.5393	1.27×10^{0}	0.409
3.2	0.0796	0.4967	8.59×10^{-1}	0.344
3.5	0.0789	0.4444	4.58×10 ⁻¹	0.247
4.0	0.0612	0.3982	1.53×10^{-1}	0.185
4.5	0.0545	0.3543	4.87×10 ⁻²	0.110
5.0	0.0484	0.3234	1.60×10^{-2}	0.070
5.5	0.0387	0.3012	5.12×10 ⁻³	0.068
6.0	0.0344	0.2798	1.69×10^{-3}	0.052
6.5	0.0300	0.2618	5.79×10^{-4}	0.045
7.0	0.0272	0.2462	2.17×10 ⁻⁴	0.035
8.0	0.0212	0.2202	4.03×10 ⁻⁵	0.013

Table S19 Cole-Cole fit values for 3'_{0.67} in zero dc field from 2.8 to 8.0 K.

Fig. S30 Temperature dependence of the relaxation time τ for 1·CH₃OH, 1'_{0.33}·CH₃OH and 1'_{0.12}·CH₃OH under 1.4 kOe dc field. The dashed lines indicate fitted lines for a single relaxation process of Raman $\tau^{-1} = CT^n$ and phonon-bottleneck limited direct process $\tau^{-1} = A_{pb}T^2$. The solid lines indicate the sum of the two relaxation processes.

Fig. S31 Field dependence of the relaxation time τ for **3** at 4.0 K. The dashed lines indicate fitted lines for a single relaxation process of QTM $\tau^{-1} = B_1/(1+B_2H^2)$, Raman $\tau^{-1} = CT^n$ and direct process $\tau^{-1} = ATH^4$. The solid lines indicate the sum of the two relaxation processes.

Table S20 Fitting parameters for the relaxation dynamics in 1 · CH₃OH, 1'_{0.33} · CH₃OH and 1'_{0.12} · CH₃OH.

	H_{dc}/kOe	$A_{pb}/{ m s}^{-1}{ m K}^{-2}$	B_I / s^{-1}	B_2/kOe^{-2}	$C / \mathrm{s}^{-1} \mathrm{K}^{-n}$	n
1·CH ₃ OH	1.4	1.96			1.35×10^{-3}	8.0
1' _{0.33} ·CH ₃ OH	1.4	$6.84 imes 10^{-1}$			1.35×10^{-3}	8.0
1' _{0.12} ·CH ₃ OH	1.4	$2.51 imes 10^{-1}$	5006	46.3	$1.35 imes 10^{-3}$	8.0

Table S21 Fitting parameters for the relaxation dynamics in 2 and $2'_{0.52}$.

	H_{dc}/kOe	$C /\mathrm{s}^{-1}\mathrm{K}^{-}$	n
2	0	$1.18 imes 10^{-2}$	6.6
	0.4	$1.18 imes 10^{-2}$	6.6
2'0.52	0	1.18×10^{-2}	6.6

Table S22 Fitting parameters for the relaxation dynamics in 3 and 3'_{0.67}.

	H_{dc}/kOe	$A / kOe^{-4} s^{-1}$	$B_I /{ m s}^{-1}$	B_2/kOe^{-2}	$C / s^{-1} K^{-n}$	п	$ au_0$ / s	$\Delta_{\it Orbach}/{ m cm}^{-1}$
3	0	9.05×10^{-3}	237.7	1361			2.40×10^{-10}	63.9
	0.8				$4.69 imes 10^{-4}$	6.7	4.77×10^{-10}	63.9
3' _{0.67}	0				4.69×10^{-4}	6.7	4.77×10^{-10}	63.9

Table S23 Fitting parameters for the relaxation dynamics in 4 ·CH₃OH.

	H_{dc}/kOe	$ au_{QTM}$ / s	$C / \mathrm{s}^{-1} \mathrm{K}^{-n}$	n
4·CH ₃ OH	0	4.67×10^{-4}	4.68×10^{-2}	6.41
	0.4	1.43×10^{-3}	4.68×10^{-2}	6.41
	1.8	8.82×10^{-2}	4.68×10^{-2}	6.41

3. Powder X-ray diffraction measurement.

Powder XRD data was collected at room temperature on a Rigaku RINT 2100 powder diffractometer using Cu K α radiation ($\lambda = 1.5418$ Å). The sample was ground in an agate mortar and placed on a silicon sample holder. The simulated powder pattern was calculated from the cif using the Mercury 3.8 software.

Fig. S32 Powder XRD patterns of 1·CH₃OH, 1'_{0.12}·CH₃OH, 1'_{0.33}·CH₃OH and the simulated pattern of [Zn(Himl)₂]·CH₃OH at room temperature.^{Error! Bookmark not defined.}

Fig. S33 Powder XRD patterns of 2 and $2'_{0.52}$ at room temperature, and the simulated pattern of [Zn(Himn)₂] at 90 K.²

Fig. S34 Powder XRD patterns of **3** and **3'**_{0.67} at room temperature, and the simulated patterns of $[Zn(Hthp)_2]$ at 90 K.³