Supporting Information for

A Novel Green Synthesis of Silver Nanoparticles by the Residues of Chinese Herbal Medicine and their Biological Activities

Simin Wei^{†a}, Yinghui Wang^{†*b}, Zhishu Tang^{*a}, Hongbo Xu^a, Zhe Wang^a, Tian Yang^a, Taiyan Zou^a

(a Shaanxi Collaborative Innovation Center of Chinese Medicine Resources Industrialization, State Key

Laboratory of Research & Development of Characteristic Qin Medicine Resources/Shaanxi Innovative Drug

Research Center, Shaanxi University of Chinese Medicine, 712046, China)

(^b College of Science, Chang'an University, 710064, China)

([†] These authors contributed equally)

(* corresponding authors, E-mail addresses: wangyinghui@iccas.ac.cn (YH Wang); tzs6565@163.com (ZS Tang))

1 1			5						
	pH of waste extract								
Times/h	4.0	5.0	6.0	7.0	8.0	9.0	10.0		
1.0	104.7 ± 0.7	36.6±0.6	77.8±1.4	99.7±0.1	94.1±1.3	129.9±3.5	31.9±1.6		
2.0	112.3±0.2	62.5 ± 2.7	98.2±1.6	79.8 ± 2.9	81.9 ± 5.2	$176.0{\pm}3.7$	32.3±1.8		
3.0	109.6±1.0	39.8 ± 0.8	70.4±2.2	93.1±8.1	95.1±3.7	122.1±1.9	25.1±1.0		
4.0	71.9±0.4	60.1 ± 1.0	64.8±1.3	85.3±11.8	70.3 ± 0.2	$121.0{\pm}1.8$	34.2±0.9		
5.0	94.8±1.1	44.5±0.3	79.4±1.3	59.8±0.3	71.7±0.4	98.3±1.9	23.7±1.2		
6.0	130.9±1.8	38.1±1.4	83.4±1.1	73.1±5.6	110.4±8.3	122.4±6.4	22.2±0.5		

Table S1 The average size of AgNPs obtained at different biosynthesis parameters with the material proportion of waste extract: $AgNO_3 = 1:1$.

Table S2 The average size of AgNPs obtained at different material proportion (pH 10.0) after 2 h reaction.

	Waste extract:AgNO ₃							
	2:1	1:1	1:2	1:3	1:5			
Size/nm	49.6±0.8	32.3±1.8	35.8±1.2	54.8±3.9	53.4±3.3			

Figure S1 Zeta potential of biosynthesized AgNPs under the most efficient parameters

Figure S2 The average size of biosynthesized AgNPs after 2 month storage

Figure S3 FT-IR spectra of Bazheng Mixture residue extract (the peak at 3402 cm⁻¹ corresponds almost entirely to the N–H stretching vibrations of the peptide linkages. The peak at 2931 cm⁻¹ belongs to the stretching vibration of methyl groups. The broad peak from 2287 to 1193 cm⁻¹, which has a sharp peak locating at 1457 cm⁻¹, are attributed to C=O stretching vibrations of cyclic esters from the vitamins, germinal methyl groups, amide I groups of proteins, and the bending vibration of C–OH groups and the anti-symmetric stretching band of C–O–C groups of polysaccharides and/or chlorophyll, respectively)