Supplementary information for

Operando soft X-ray absorption spectroscopic study on microporous carbon-supported sulfur cathodes

Yao Xiao^a, Kentaro Yamamoto^{a,*}, Yukiko Matsui^b, Toshiki Watanabe^a, Koji Nakanishi^a,

Tomoki Uchiyama^a, Shoso Shingubara^c, Masashi Ishikawa^b, Masayoshi Watanabe^d and

Yoshiharu Uchimoto^a

a. Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho,

Sakyo-ku, Kyoto 606-8501, Japan

- Department of Chemistry and Materials Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
- c. Department of Mechanical Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680,
 Japan
- d. Institute of Advanced Sciences, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

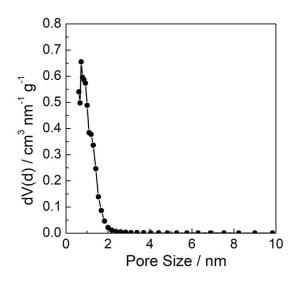
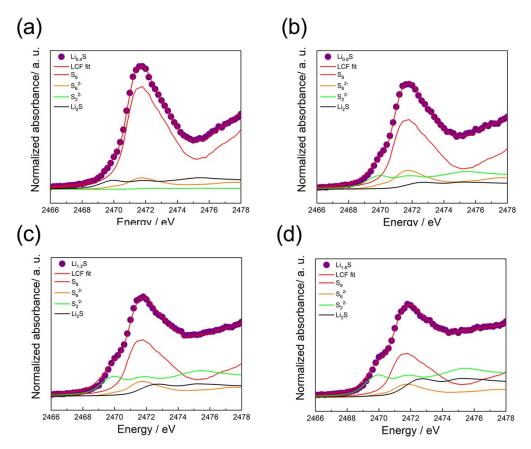



Fig. S1. Pore size distribution of the microporous carbon obtained by N_2 adsorption isotherm measurement at -196 °C.

Fig. S2. Thermogravimetric analysis curves of sulfur and microporous carbon-supported sulfur under an Ar atmosphere at a heating rate of 5 °C/min.

Fig. S3 Linear combination fitting result of sulfur *K*-edge XANES of microporous carbonsupported sulfur cathode at discharge state of $Li_{0.4}S$, $Li_{0.8}S$, $Li_{1.2}S$ and $Li_{1.6}S$.