Supplementary information

Fabrication of antimony doped tin oxide-graphene nanocomposite for high effective capacitive deionization of saline water

Long Ren^a, Bin Xu^b, Guodong Wang^a, Xiaoshuang Yin^a, Ying Liu^a, Wenzhong Yang^{a,*}, and Yun Chen^{a,*}

^aSchool of Chemistry and Molecular Engineering, Nanjing Tech University, No. 30 Puzhu Road (S), Nanjing 211816, China ^bNanjing Institute of Environmental Sciences, Ministry of Ecology and Environmental of the People's Republic of China, No.8 Jiangwangmiao Street, Nanjing 210042, China *E-mail: vchen@njtech.edu.cn

1. Materials and Characterization

Graphite powder (KS-10) for graphite oxide (GO) preparation, H₂SO₄ (98%), H₃PO₄ (85%), KMnO₄ (A. R.), H₂O₂ (30%), HCl (37%), SnCl₂·2H₂O (98%), SbCl₃ (99%) and NH₃·H₂O (25%) were used without any further purification. All the above reagents were purchased from Sinopharm Chemical Reagent Company Limited.

The surface morphology of the composite was studied by a JEOL JSM-5900 scanning electron microscope (JEOL Ltd., Japan) and field-emission scanning electron microscope (FESEM Hitachi S-7400, Japan). High-resolution transmission electron microscopy (HRTEM) was performed by JEOL-2100F. The phase and crystallinity were characterized using a Rigaku X-ray diffractometer (Rigaku Co., Japan) with Cu K α (λ =1. 54056 Å) radiation over a range of 2 θ angles from 5° to 80°. The electrochemical performances of the electrodes were determined using a Versa Stat 4 potentiostat device. The N₂ sorption isotherms and pore size distribution were tested using a 3H-2000PM2 micropore structure analyzer (Beishide Co., Beijing). The chemistry state of elements was evaluated by X-ray photoelectron spectroscopy instrument (XPS, Thermo ESCALAB 250xi spectrophotometer with Al–K α radiation). Thermogravimetric analysis (TGA) was performed under air flow from 30°C to 800°C using a NETZSCH STA 449F3 TGA apparatus. Electrochemical experiments were performed with a CHI660E Electrochemical Workstation.

2. The preparation of graphene oxide

Graphene oxide (GO) was synthesized using conventional Hummer's method with slight modification¹. 2 g of graphite powder was treated by 180 mL of H₂SO₄ and 20 mL of H₃PO₄ in a 500 mL round-bottomed flask. With constant stirring, 12 g of KMnO₄ was slowly added in the ice bath to keep the reaction temperature lower than 20°C. Then the mixture was heated to 50°C and the reaction was kept for 10 h. The reactant was cooled down to room temperature and H₂O₂ (30%) was injected. Finally, after washing with HCl (10%) and DI water, the mixture was centrifuged for several times and then dried at 60°C for 12 h.

3. EDX of the fabricated SnO₂-RGO (20 wt.%) nanocomposite

Fig. S1. EDX of the fabricated SnO₂-RGO (20 wt.%) nanocomposite

4. C 1s region in the XPS spectrum of pure RGO

Fig. S2. C 1s region in the XPS spectrum of pure RGO

5. CV curves of pristine RGO and ATO-RGO composites with different mass ratios between ATO and graphene at different scan rates

Fig. S3. CV measurements for (A) RGO, (B) ATO-RGO (10 wt.%), (C) ATO-RGO (20 wt.%), (D) ATO-RGO (30 wt.%) and (E) ATO-RGO (40 wt.%) modified electrodes in 1 M NaCl solution at the scan rates from 5 to 100 mV s⁻¹, respectively.

6. The specific capacitance of SnO₂-RGO (20 wt.%).

Fig. S4. (A) CV measurement in 1 M NaCl solution at the scan rates of 5 mV s⁻¹ and (B) chargedischarge test at a current density of 1 A g⁻¹ for SnO₂-RGO (20 wt.%) electrode.

7. CDI performance at different applied voltage in the testing solution.

Fig. S5. CDI performance at different applied voltage in the testing solution.

Reference

1 Y. X. Xu, K. X. Sheng, C. Li and G. Q. Shi, *Acs Nano*, 2010, 4, 4324-4330.