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SI-1 Determination of absorption cross-section 
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Figure SI.1 – Absorption spectrum for V-shaped azo-chromophores/PMMA in guest-host film for 

different dye concentration.

SI-1 Temporal evolution of the optical birefringence mechanism

We have employed the bi-exponential model is widely used to obtain the formation and 

relaxation times for the optical birefringence. Such a model can be described by:
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in which ∆nf(t) and ∆nr(t) are, respectively, the temporal evolution of the formation and 

relaxation of birefringence; α1, α2, α3, and α4 are pre-exponential factors; τ1 and τ2 are 

the time constants for growth; τ3 and τ4 the constants of time for relaxation of 

birefringence. Such a model considers that both the growth and relaxation of 

photoinduced birefringence have slow and fast components determining its temporal 

dynamics. 1-4 For the growth process, the fast component is associated with 

photoisomerization trans→cis (AHB), and the subsequent molecular reorientation that 

is initially very efficient given the high the free volume in guest-host films. With the 

decrease of the free volume available to accommodate the chromophores reorienting, as 

a consequence of the orientation process itself, a slow component takes place due to a 

lower free volume available for reorientation which results in a slower increase in the 

photoinduced birefringence. In the relaxation of birefringence, the fast process is 

associated with cis→trans thermal isomerization and the one slow associated with 

thermal angular diffusion of azo-aromatic groups with the movement of the polymeric 

chains.5 Figure SI.2 shows the slow (τ1 and τ3) and fast (τ2 and τ4) characteristic times 

for the formation and relaxation optical birefringence a function of the laser power. As 

observed, all time constants decrease as a function of the increase of laser power. Such 

behavior is characteristic of optical storage in guest-host films. 6 Table SI.2 shows the 

slow and fast time constants after the saturation. As can be noted, all the times are 

higher for the Film 1 due to the higher chromophores density, which decreases the free 

volume to occur trans→cis→trans photoisomerization cycle. 
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Figure SI.2 - Slow (τ1 and τ3) and fast (τ2 and τ4) time constants related to formation and relaxation 

optical birefringence. Vertical dashed lines show the saturation laser power. 

Table SI.1 – Formation and relaxation time constants obtained for Film 1 and Film 2.

times Film 1 Film 2

τ1 5.7 ± 0.6 3.9 ± 0.5

τ 2 92.5 ± 6.6 69.3 ± 8.2

τ3 5.2 ± 1.0 4.4 ± 0.9

τ4 50.4 ± 7.5 41.3 ± 6.2

SI-2 - Long-term residual memory
We characterized the long-term residual memory (Figure SI.3) and for Film 1, 

its value was 4% after 10 hours. This value for the residual memory was still observed 

after months, indicating the V-shaped azo-chromophore as a potential material for 

application in optical switching devices.  
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Figure SI.3 – Normalized transmittance as a function of the time (log-log scale).
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