Supporting information

Probing the High Performance of Photoinduced Birefringence in V-Shaped Azoaromatic/PMMA Guest-Host Films

Lidiana M. Silva¹, Daniel L. Silva², Mariana V. Boas¹, Yann Bretonniere³, Chantal

Andraud³, Marcelo G. Vivas^{1,*}

¹Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, Poços de Caldas, MG. Brazil

²Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Rod. Anhanguera – Km 174,13600-970 Araras, SP, Brazil

³Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F69342, Lyon, France

SI-1 Determination of absorption cross-section

Figure SI.1 – Absorption spectrum for V-shaped azo-chromophores/PMMA in guest-host film for different dye concentration.

SI-1 Temporal evolution of the optical birefringence mechanism

We have employed the bi-exponential model is widely used to obtain the formation and relaxation times for the optical birefringence. Such a model can be described by:

$$\Delta n_{f}(t) = \alpha_{1} \left(1 - e^{-t/\tau_{1}} \right) + \alpha_{2} \left(1 - e^{-t/\tau_{2}} \right)$$
(1)

$$\Delta n_r(t) = \alpha_3 e^{-t/\tau_3} + \alpha_4 e^{-t/\tau_4} \tag{2}$$

in which $\Delta n_f(t)$ and $\Delta n_r(t)$ are, respectively, the temporal evolution of the formation and relaxation of birefringence; α_1 , α_2 , α_3 , and α_4 are pre-exponential factors; τ_1 and τ_2 are the time constants for growth; τ_3 and τ_4 the constants of time for relaxation of birefringence. Such a model considers that both the growth and relaxation of photoinduced birefringence have slow and fast components determining its temporal dynamics. ¹⁻⁴ For the growth process, the fast component is associated with photoisomerization *trans* \rightarrow *cis* (AHB), and the subsequent molecular reorientation that is initially very efficient given the high the free volume in guest-host films. With the decrease of the free volume available to accommodate the chromophores reorienting, as a consequence of the orientation process itself, a slow component takes place due to a lower free volume available for reorientation which results in a slower increase in the photoinduced birefringence. In the relaxation of birefringence, the fast process is associated with $cis \rightarrow trans$ thermal isomerization and the one slow associated with thermal angular diffusion of azo-aromatic groups with the movement of the polymeric chains.⁵ Figure SI.2 shows the slow (τ_1 and τ_3) and fast (τ_2 and τ_4) characteristic times for the formation and relaxation optical birefringence a function of the laser power. As observed, all time constants decrease as a function of the increase of laser power. Such behavior is characteristic of optical storage in guest-host films. ⁶ Table SI.2 shows the slow and fast time constants after the saturation. As can be noted, all the times are higher for the Film 1 due to the higher chromophores density, which decreases the free volume to occur *trans* \rightarrow *cis* \rightarrow *trans* photoisomerization cycle.

Figure SI.2 - Slow (τ_1 and τ_3) and fast (τ_2 and τ_4) time constants related to formation and relaxation optical birefringence. Vertical dashed lines show the saturation laser power.

times	Film 1	Film 2
$\mathbf{\tau}_1$	5.7 ± 0.6	3.9 ± 0.5
τ ₂	92.5 ± 6.6	69.3 ± 8.2
τ ₃	5.2 ± 1.0	4.4 ± 0.9
$ au_4$	50.4 ± 7.5	41.3 ± 6.2

Table SI.1 – Formation and relaxation time constants obtained for Film 1 and Film 2.

SI-2 - Long-term residual memory

We characterized the long-term residual memory (Figure SI.3) and for Film 1, its value was 4% after 10 hours. This value for the residual memory was still observed after months, indicating the V-shaped azo-chromophore as a potential material for application in optical switching devices.

Figure SI.3 – Normalized transmittance as a function of the time (log-log scale).

References

(1) Song, O. K.; Wang, C. H.; Pauley, M. A., Dynamic processes of optically induced birefringence of azo compounds in amorphous polymers below T-g. *Macromolecules* **1997**, *30*, 6913-6919.

(2) Ho, M. S.; Natansohn, A.; Rochon, P., AZO POLYMERS FOR REVERSIBLE OPTICAL STORAGE .7. THE EFFECT OF THE SIZE OF THE PHOTOCHROMIC GROUPS. *Macromolecules* **1995**, *28*, 6124-6127.

(3) Ho, M. S.; Natansohn, A.; Rochon, P., Azo polymers for reversible optical storage .9. Copolymers containing two types of azobenzene side groups. *Macromolecules* **1996**, *29*, 44-49.

(4) Meng, X.; Natansohn, A.; Rochon, P., Azo polymers for reversible optical storage .13. Photoorientation of rigid side groups containing two azo bonds. *Polymer* **1997**, *38*, 2677-2682.

(5) Sekkat, Z.; Wood, J.; Knoll, W., REORIENTATION MECHANISM OF AZOBENZENES WITHIN THE TRANS-DOUBLE-RIGHT-ARROW-CIS PHOTOISOMERIZATION. *Journal of Physical Chemistry* **1995**, *99*, 17226-17234.

(6) Janssens, S.; Breukers, R.; Swanson, A.; Raymond, S., Photoinduced properties of Bisazo chromophore host guest systems-birefringence and all optical tuneable polymer waveguide Bragg gratings. *Journal of Applied Physics* **2017**, *122*.