Supporting Information

Synthesis of Aryl Azide Chain-end Functionalized *N*-Linked Glycan Polymer and Its Photo-labelling of Specific Protein

Ka Keung Chan^a, Qiaoshi Lei^b, Jinshan Tang^b, Xue-Long Sun^a*

^aDepartment of Chemistry, Chemical and Biomedical Engineering and Center for Gene Regulation in Health and Dis-ease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States

^bInstitute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, West 601, Huangpu Avenue, Guangzhou, People's Republic of China

Experimental

Materials and methods

All solvents and reagents were purchased from commercial sources and were used as received. Glc, Gal, and Lac were purchased from Sigma (USA). Deionized water with a resistivity of 18 M Ω cm⁻¹ was used as solvent in all polymerization reactions and dialysis experiments. Dialysis was performed using cellulose membrane with a molecular weight cutoff of 3 kDa with water as solvent. ¹H NMR spectra were measured at room temperature with a Bruker AV400 MHz spectrometer and D₂O was used as deuterated solvent. Aryl chloride chain-end functionalized *N*-lactosyl polymer synthesized in our previous report¹.

Glycomonomers (3a-3c) were synthesized in our previously reported methods¹.

Synthesis of glycosylamines (2a-2c) via Kochetkov method. A solution of saccharide(1a-1c) (5.0 mmol) and ammonium bicarbonate (389.0 mg, 5.0 mmol) in 20 mL of aqueous ammonia was kept in an oil bath at 40°C for 40 h and then was freeze-dried to afford glycosylamines (2a-2c), which were directly subjected to the next reaction without purification.

Acrylation of glycosylamines (2a-2c). The dry glycosylamines (2a-2c) obtained above were dissolved in 60 mL of CH₃OH-H₂O (1:1, v/v) and 3.0 g of Na₂CO₃ was added, respectively. The mixture was cooled in an ice bath for 30 min and then a solution of 1.28 mL of acryloyl chloride in 7 mL of THF was added dropwise. After that, the reaction mixture was stirred at 0°C for another 1 h. The organic solvents were evaporated under reduced pressure and the remaining aqueous layer was lyophilized to dryness, which were purified by silica gel column chromatography eluted with EtOAc and CH₃OH (5:3, v/v) afford glycomonomers (**3a-3c**).

Preparation of aryl azide chain-end functionalized *N*-linked glycan polymers (4a-4c)

Aryl azide chain-end functionalized *N*-glucosyl polymer (4a): 4-Azidoaniline (3.1 mg, 0.018 mmol) and 6.4 μ L of HBF₄ solution (48 wt%, 0.054 mmol) were dissolved in 200 μ L of degassed ddH₂O in a three-necked flask. The mixture solution was cooled in an ice bath for 30 min and a solution of sodium nitrite (NaNO₂, 2.8 mg, 0.034 mmol) in 200 μ L of ddH₂O was added to react for 30 min in an atmosphere of N₂. Then, a degassed mixture solution of *N*-(prop-2-enoyl)- β -D-glucopyranosylamine (42.0 mg, 0.18 mmol), acrylamide (51.2 mg, 0.72 mmol) and NaOCN (1.2 mg, 0.018 mmol) dissolved in 1 mL of degassed ddH₂O was added into the flask containing

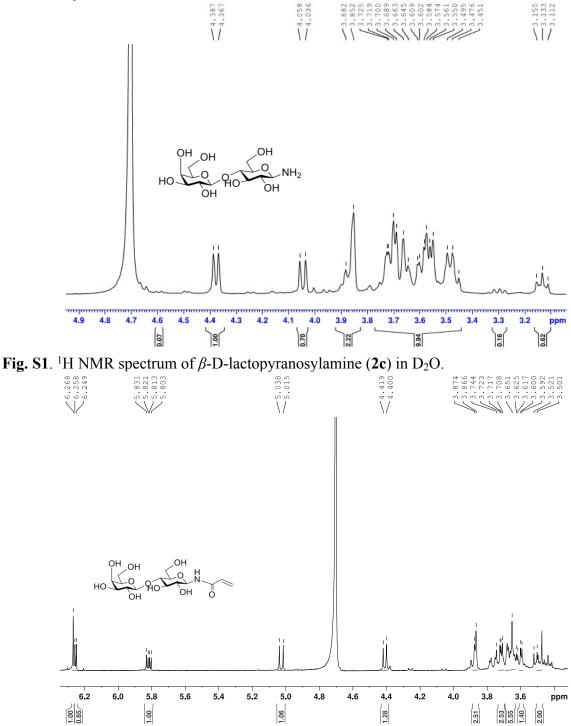
the diazonium salt. The reaction solution was kept in an oil bath at 60°C to react for 20 h. The resulting mixture was dialyzed against ddH_2O for 2 days to remove the impurity and then freezedried to yield the glycopolymer **4a** (72.0 mg, 58.0%). The molecular weight (*M*n) was about 33,300 with saccharide content at about 9,000 as determined by ¹H NMR spectrum.

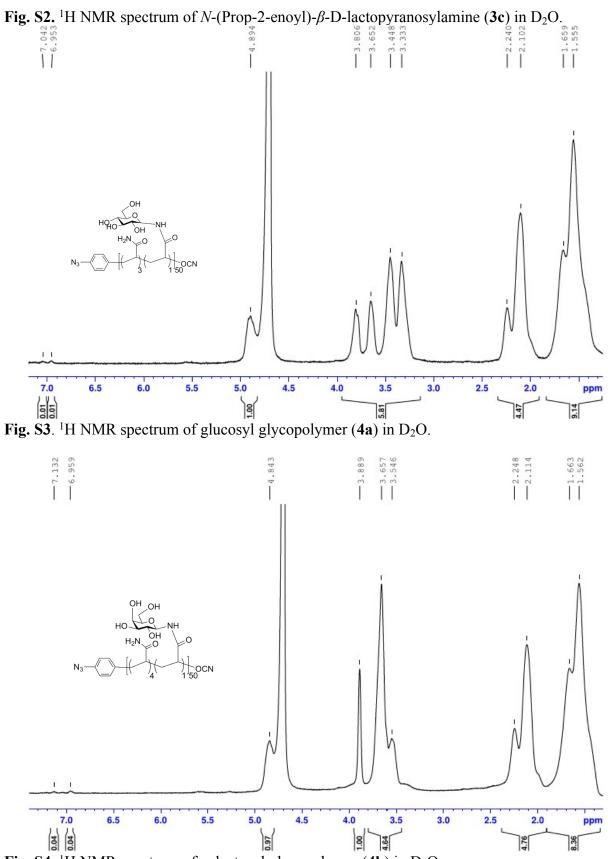
Aryl azide chain-end functionalized *N*-galactosyl polymer (4b): 4-Azidoaniline (3.1 mg, 0.018 mmol) and 6.4 μ L of HBF₄ solution (48 wt%, 0.054 mmol) were dissolved in 200 μ L of degassed ddH₂O in a three-necked flask. The mixture solution was cooled in an ice bath for 30 min and a solution of sodium nitrite (NaNO₂, 2.8 mg, 0.034 mmol) in 200 μ L of ddH₂O was added to react for 30 min in an atmosphere of N₂. Then a degassed mixture solution of *N*-(prop-2-enoyl)*β*-D-galactopyranosylamine (42.0 mg, 0.18 mmol), acrylamide (51.2 mg, 0.72 mmol) and NaOCN (1.2 mg, 0.018 mmol) dissolved in 1 mL of degassed ddH₂O was added into the flask containing the diazonium salt. The reaction solution was kept in an oil bath at 60°C to react for 20 h. The resulting mixture was dialyzed against ddH₂O for 2 days to remove the impurity and then freeze-dried to yield the glycopolymer **4b** (82.0 mg, 78.0%). The molecular weight (*M*n) was about 21,800 with saccharide content at about 9,000 as determined by ¹H NMR spectrum.

Aryl azide chain-end functionalized *N***-lactosyl polymer (4c).** 4-Azidoaniline (12 mg, 0.07 mmol) and sodium nitrite (NaNO₂, 10 mg 0.14 mmol) were dissolved in 2.5 mL of H₂O-THF (1:1) in a three-necked flask. The mixture solution was cooled in an ice bath for 30 min and the 36 μ L of HBF₄ solution (48 wt%, 0.276 mmol) was added to react for 1 h. Then, a degassed mixture of *N*-(prop-2-enoyl)- β -D-lactopyranosylamine (420 mg, 1.06 mmol) acrylamide (280 mg, 3.94 mmol) and NaOCN (10 mg, 0.153 mmol) dissolved in 2 mL of ddH₂O was added into the flask containing the diazonium salt. The reaction solution was kept in an oil bath at 60°C to react for 20 h. The resulting mixture was dialyzed against ddH₂O for 2 days to remove the impurity and then freeze-dried to yield the glycopolymer **4c** (436 mg, 62.3%). The molecular weight (*M*n) was about 78,970 with saccharide content at about 19,500 as determined by ¹H NMR spectrum.

Preparation of aryl azide chain-end functionalized polyacrylamide. 4-Azidoaniline (7.2 mg, 0.042 mmol) and sodium nitrite (NaNO₂, 6 mg 0.084 mmol) were dissolved in 1.5 mL of H₂O-THF (1:1) in a three-necked flask. The mixture solution was cooled in an ice bath for 30 min and the 21.6 μ L of HBF₄ solution (48 wt%, 0.166 mmol) was added to react for 1 h. Then a degassed solution of acrylamide (420 mg, 5.91 mmol) and NaOCN (6 mg, 0.0918 mmol) dissolved in 1.2 mL of ddH₂O was added into the flask containing the diazonium salt. The reaction solution was kept in an oil bath at 60°C to react for 20 h. The resulting mixture was dialyzed against ddH₂O for 2 days to remove the impurity and then freeze-dried to yield the aryl azide chain-end functionalized polyacrylamide (350 mg, 83.4%). The molecular weight (*M*n) was about 44744 as determined by ¹H NMR spectrum.

UV-induced photo-crosslinking assay


Glycopolymers (2.8 mg, 3.57×10^{-8} mol) and lectin *Arachis hypogae* (0.6 mg, 5.45×10^{-9} mol, lyophilized powder, Sigma) were dissolved in 100 µL of PBS buffer (pH 7.4) solution containing 0.2% Tween 20 and allowed to react for 4 h in RT. Then, the mixture was degassed and exposed to a 366 nm UV source in the dark for 30 min while remaining on ice.


Characterization of photo-labeled lectin by SDS-PAGE

Laemmli Sample Buffer (Bio-Rad, #1610737) was prepared according to product guidelines. Sample taken directly from photo-crosslinking assay was added to Laemmli Sample Buffer to

produce aliquots corresponding to 25 μ g of protein (5 μ L) for each sample and then boiled at 100°C for 20 min. Samples were then characterized in SDS-polyacrylamide gels containing 10% diH₂O, 12% acrylamide/Bis-acrylamide, 25% 1.5 M Tris-HCL pH 8.8, 0.1% SDS, 0.1% APS, 0.1% TEMED, and electrophoresis were performed at 120V for 90 min followed by silver staining (Pierce[®] Silver Stain Kit, Thermo Scientific).

Fig. S4. ¹H NMR spectrum of galactosyl glycopolymer (**4b**) in D_2O .

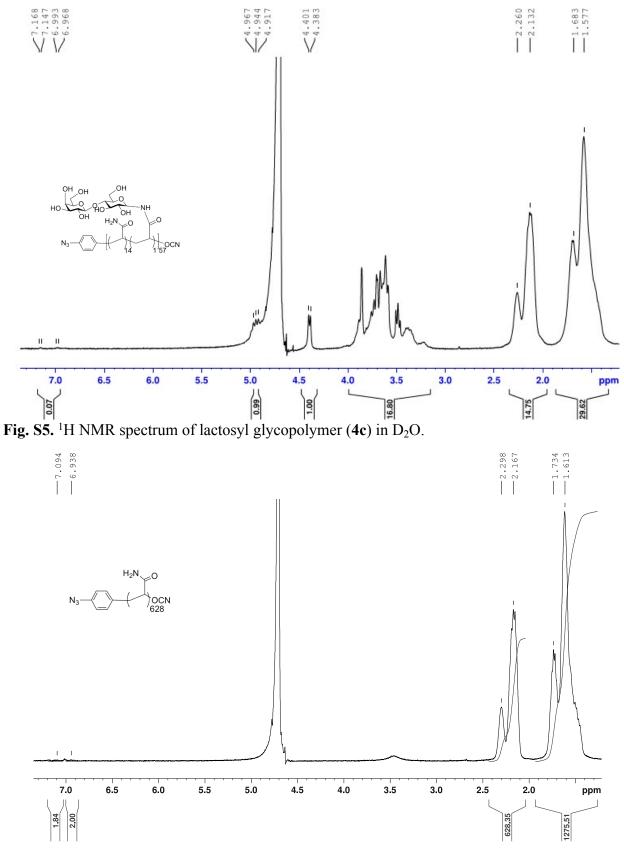


Fig. S6. ¹H NMR spectrum of polyacrylamide in D₂O.

Reference

 Tang, J.; Ozhegov, E.; Liu, Y.; Wang, D.; Yao, X.; Sun, X. L. Straightforward Synthesis of N-Glycan Polymers from Free Glycans via Cyanoxyl Free Radical-Mediated Polymerization. ACS Macro Lett. 2017, 6 (2), 107-111. https://doi.org/10.1021/acsmacrolett.6b00928.