Supporting Information

Copper mediated one-pot synthesis of quinazolinones and exploration of piperazine linked quinazoline derivatives as anti-mycobacterial agents

Satyaveni Malasala^a, Jitendra Gour^a, Md. Naiyaz Ahmed^b, Srikanth Gatadi^a, Manjulika Shukla^b, Grace Kaul^b, Arunav Dasgupta^b, Y.V Madhavi^a, Sidharth Chopra^b, Srinivas Nanduri^{a*}.

^aDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India

^bDivision of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow-226031, Uttar Pradesh, India

Contents

1.0 Anti-bacterial screening results	Page no. 2 - 5
2.0 Experimental section	Page no. 5-16
3.0 Copies of spectra	Page no. 17 – 56

1.0 Anti-bacterial screening results

Table 1. Anti-bacterial screening results (MIC: μg/mL) of 2-aryl/heteroaryl quinazoline based amide derivatives **8a-z**.

S.no	Compound	\mathbf{R}_1	\mathbf{R}_2	<i>E.coli</i> ATCC 25922	S.aureus ATCC 29213	K.pneumoniae BAA 1705	<i>A.baumannii</i> BAA 1605	P.aeruginosa ATCC 27853
1.	8a	man	N N	>64	>64	>64	>64	>64
2.	8b	min	Solution CN	>64	>64	>64	>64	>64
3.	8c	more		>64	>64	>64	>64	>64
4.	8d			>64	>64	>64	>64	>64
5.	8e		·222	>64	>64	>64	>64	>64
6.	8f		CI S	>64	>64	>64	>64	>64

		1						
7.	8g	survey	Br John Cl	>64	>64	>64	>64	>64
8.	8h	when	- And	>64	>64	>64	>64	>64
9.	8i	-O O O	- And	>64	>64	>64	>64	>64
10.	8j		Br VVV CI	>64	>64	>64	>64	>64
11.	8k		Solo Solo Solo Solo Solo Solo Solo Solo	>64	>64	>64	>64	>64
12.	81		CN CN	>64	>64	>64	>64	>64
13.	8m		CF3	>64	>64	>64	>64	>64
14.	8n	A A A A A A A A A A A A A A A A A A A	N N	>64	>64	>64	>64	>64
15.	80	N	Solution of the second	>64	>64	>64	>64	>64

16.	8p	N		>64	>64	>64	>64	>64
17.	8q	N		>64	>64	>64	>64	>64
18.	8r	Z	1 1 2 2 2 2	>64	>64	>64	>64	>64
19.	8s	nor Z	NO ₂	>64	>64	>64	>64	>64
20.	8t	Survey State	Br Solution CI	>64	>64	>64	>64	>64
21.	8u	N	CI	>64	>64	>64	>64	>64
22.	8v	S	Br Solution CI	>64	>64	>64	>64	>64
23.	8w	S	NO ₂	>64	>64	>64	>64	>64
24.	8x	S	·~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	>64	>64	>64	>64	>64
25.	8y	O O	Solution CN	>64	>64	>64	>64	>64

26.	8z	O	O V V V V V V NO ₂	>64	>64	>64	>64	>64
-----	----	---	--	-----	-----	-----	-----	-----

2 Experimental section

2.1 General Methods. All the reagents and solvents were obtained from commercial suppliers and were used without further purification. Analytical thin layer chromatography (TLC) was performed on MERCK pre-coated silica gel 60-F254 (0.5 mm) aluminum plates. Visualization of the spots on TLC plates was achieved by UV light. ¹H and ¹³C NMR spectra were recorded on Bruker 500 MHz by making a solution of samples in the DMSO- d_6 as solvent using tetramethyl silane (TMS) as the internal standard. Chemical shifts for ¹H and ¹³C are reported in parts per million (ppm) downfield from tetra methyl silane. Spin multiplicities are described as s (singlet), brs (broad singlet), d (doublet), t (triplet), q (quartet), and m (multiplet). Coupling constant (*J*) values are reported in hertz (Hz). HRMS were determined with Agilent QTOF mass spectrometer 6540 series instrument. Wherever required, column chromatography was performed using silica gel (60-120). The reactions wherever anhydrous conditions required are carried under nitrogen positive pressure using freshly distilled solvents. All evaporation of solvents was carried out under reduced pressure using rotary evaporator below 45 °C. Melting points were determined with an electro thermal digital melting point apparatus IA9100 and are uncorrected. The names of all the compounds given in the experimental section were taken from ChemBioDraw Ultra, Version 12.0.

2.1.1 General Experimental Procedure for the Synthesis of substituted quinazolinones (3a-o): A solution of the 2-bromo benzoic acid (1 mmol), copper oxide (0.5 mmol) and aqueous ammonia (5 mmol) was taken in 5 mL of DMSO under oxygen atmosphere at room temperature. The reaction was then stirred for 2 h at 100 °C. Then substituted benzaldehyde (1 mmol) was added and progress of the reaction was monitored by TLC. After completion of the reaction, the suspension was extracted with ethyl acetate (3x5.0 mL), washed with 1:1 mixture of brine. The combined organic extracts were dried over anhydrous sodium sulphate. After removal of the solvent under

reduced pressure, the crude product was purified by using column chromatography, EtOAc:Hexane (2:8) as eluent on silica gel to afford the pure products.

2.1.1.1 2-phenylquinazolin-4(3H)-one (3a)

White solid; yield 80 %; mp:125-129 °C; ¹H NMR (500 MHz, DMSO- d_6): δ 12.56 (s, 1H), 8.33–8.08 (m, 3H), 7.90–7.81 (m, 1H), 7.80–7.72 (m, 1H), 7.67–7.47 (m, 4H); ¹³C NMR (125 MHz, DMSO- d_6): δ 161.2, 150.3, 149.4, 149.1, 148.9, 138.4, 135.1, 128.2, 127.7, 127.0, 126.5, 122.6; HRMS (ESI): m/z calculated for C₁₄H₁₀N₂O 223.0871 found 223.0898 [M+H]+.

2.1.1.2 2-(3,4-dimethoxyphenyl)quinazolin-4(3H)-one (3b)

White solid; yield 78 %; mp:125–129 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.44 (s, 1H), 8.16-8.10 (m, 1H), 7.90-7.82 (m, 1H), 7.86–7.78 (m, 2H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.55–7.45 (m, 1H), 7.14 (t, *J* = 13.9 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.9, 152.3, 152.0, 149.4, 149.0, 134.9, 127.8, 126.5, 126.3, 125.2, 121.6, 121.2, 111.8, 111.1, 56.1, 56.1; HRMS (ESI): m/z calculated for C₁₆H₁₄N₂O₃ 283.1083 found 283.1113 [M+H]+.

2.1.1.3 2-(3,4,5-trimethoxyphenyl)quinazolin-4(3H)-one (3c)

White solid; yield 78 %; mp:126–130 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.54 (s, 1H), 8.16 (d, *J* = 7.7 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.70-7.60 (m, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 3.90 (s, 6H), 3.78 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.8, 153.3, 152.2, 149.1, 140.7, 135.1, 128.1, 127.9, 126.9, 126.3, 121.3, 105.6, 60.6, 56.6; HRMS (ESI): m/z calculated for C₁₇H₁₆N₂O₄ 313.1188 found 313.1227 [M+H]+.

2.1.1.4 2-(pyridin-4-yl)quinazolin-4(3H)-one (3d)

White solid; yield 81 %; mp:126-130 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 11.82 (s, 1H), 8.77 (d, J = 4.5 Hz, 1H), 8.53–8.40 (m, 1H), 8.21 (t, J = 13.9 Hz, 1H), 8.09-8.01 (m, 1H), 7.91–7.85 (m, 1H), 7.81 (d, J = 8.0 Hz, 1H), 7.72–7.64 (m, 1H), 7.58 (t, J = 7.4 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.2, 150.3, 149.4, 149.1, 148.9, 138.4, 135.1, 128.2, 127.7, 127.0, 126.5, 122.6, 122.5; HRMS (ESI): m/z calculated for C₁₃H₉N₃O 224.0824 found 224.0852 [M+H]+.

2.1.1.5 2-(furan-2-yl)quinazolin-4(3H)-one (3e)

Off-white solid; yield 78 %; mp:135-139 °C; ¹H NMR (500 MHz, DMSO- d_6): δ 12.52 (s, 1H), 8.13 (d, J = 7.6 Hz, 1H), 8.01 (s, 1H), 7.82 (t, J = 7.2 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 3.4 Hz, 1H), 7.50 (t, J = 7.4 Hz, 1H), 6.76 (d, J = 1.7 Hz, 1H); ¹³C NMR (125 MHz, DMSO- d_6): δ

162.0, 149.1, 147.0, 146.5, 144.4, 135.1, 127.7, 126.9, 126.4, 121.6, 114.9, 112.9; HRMS (ESI): m/z calculated for C₁₂H₈N₂O₂ 213.0664 found 213.0688 [M+H]+.

2.1.1.6 2-(thiophen-2-yl)quinazolin-4(3H)-one (3f)

Off-white solid; yield 82 %; mp:123-126 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.67 (s, 1H), 8.24 (d, *J* = 3.3 Hz, 1H), 8.13 (d, *J* = 7.7 Hz, 1H), 7.95-7.90 (m, 1H), 7.81 (t, *J* = 7.2 Hz, 1H), 7.66 (d, *J* = 8.1 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 1H), 7.31–7.18 (m, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.2, 149.1, 148.3, 137.8, 135.1, 132.6, 129.8, 128.9, 127.4, 126.8, 126.4, 121.4; HRMS (ESI): m/z calculated for C₁₂H₈N₂OS 229.0436 found 229.0469 [M+H]+.

2.1.1.7 2-(3-aminophenyl)quinazolin-4(3H)-one (3g)

Off-white solid; yield 70 %; mp:123–127 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.32 (s, 1H), 8.20–8.10 (m, 1H), 7.87–7.80 (m, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.55–7.48 (m, 1H), 7.40 (t, *J* = 1.9 Hz, 1H), 7.28 (d, *J* = 7.7 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 6.79-6.71 (m, 1H), 5.36 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.6, 153.5, 149.4, 149.3, 135.0, 133.9, 129.5, 127.8, 126.8, 126.3, 121.4, 117.4, 115.4, 113.4. HRMS (ESI): m/z calculated for C₁₄H₁₁N₃O 238.0980 found 238.1018 [M+H]+.

2.1.1.8 2-(2,3,4-trimethoxyphenyl)quinazolin-4(3H)-one (**3h**)

Off-white solid; yield 76 %; mp:125–128 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 7.99-7.92 (m, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.28–7.17 (m, 2H), 6.85 (d, *J* = 8.7 Hz, 1H), 6.75 (d, *J* = 8.8 Hz, 2H), 6.68 (t, *J* = 7.4 Hz, 1H), 5.94 (s, 1H), 3.84 (s, 3H), 3.80 (s, 3H), 3.77 (s, 3H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 164.2, 154.1, 151.4, 148.6, 141.8, 133.6, 127.8, 127.0, 122.6, 117.5, 115.3, 114.9, 108.2, 61.7, 60.8, 56.4; HRMS (ESI): m/z calculated for C₁₇H₁₆N₂O₄ 313.1188 found 313.1226 [M+H]+.

2.1.1.9 2-(2,4-dichlorophenyl)quinazolin-4(3H)-one (3i)

White crystalline solid; yield 75 %; mp:121-124 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.68 (s, 1H), 8.27–8.10 (m, 1H), 7.92–7.86 (m, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.88-7.79 (m, 2H), 7.65–7.51 (m, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.9, 151.9, 148.9, 135.9, 135.1, 133.2, 133.2, 132.7, 129.6, 127.9, 127.7, 126.3, 121.8; HRMS (ESI): m/z calculated for C₁₄H₈Cl₂N₂O 291.0092 found 291.0129 [M+H]+.

2.1.1.10 2-(2,6-dichlorophenyl)quinazolin-4(3H)-one (3j)

White crystalline solid; yield 76 %; mp:122–125 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.82 (s, 1H), 8.26-8.20 (m, 1H), 7.90-7.86 (m, 1H), 7.75 (d, *J* = 7.9 Hz, 1H), 7.71–7.54 (m, 4H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 161.9, 150.4, 148.9, 135.2, 133.7, 133.3, 132.7, 128.8, 127.9, 126.4, 121.9; HRMS (ESI): m/z calculated for C₁₄H₈Cl₂N₂O 291.0092 found 291.0129 [M+H]+.

2.1.1.11 2-(naphthalen-2-yl)quinazolin-4(3H)-one (**3k**)

Off-white solid; yield 77 %; mp:122–125 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 12.69 (s, 1H), 8.24 (d, *J* = 7.0 Hz, 1H), 8.19 (d, *J* = 6.7 Hz, 1H), 8.14 (d, *J* = 7.6 Hz, 1H), 8.06 (d, *J* = 6.1 Hz, 1H), 7.88 (s, 1H), 7.81 (d, *J* = 5.9 Hz, 1H), 7.75 (d, *J* = 7.2 Hz, 1H), 7.66 (d, *J* = 6.6 Hz, 1H), 7.60 (d, *J* = 5.4 Hz, 4H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.4, 154.2, 149.2, 135.0, 133.6, 132.2, 130.8, 130.7, 128.8, 128.2, 127.9, 127.5, 127.3, 126.8, 126.3, 125.7, 125.5, 121.7; HRMS (ESI): m/z calculated for C₁₈H₁₂N₂O 273.1028 found 273.1071 [M+H]+.

2.1.1.12 2-(3-nitrophenyl)quinazolin-4(3H)-one (**3l**)

Off-white solid; yield 80 %; mp:123–126 °C; HRMS (ESI): m/z calculated for $C_{14}H_9N_3O_3$ 268.0722 found 268.0754 [M+H]+.

2.1.1.13 2-(3,5-dimethylisoxazol-4-yl)quinazolin-4(3H)-one (**3m**)

White solid; yield 80 %; mp:120-123 °C; ¹H NMR (500 MHz, DMSO- d_6): δ 9.98 (s, 1H), 7.70– 7.42 (m, 5H), 2.53 (s, 3H), 2.42 (s, 3H); ¹³C NMR (125 MHz, DMSO- d_6): δ 186.3, 150.8, 145.8, 138.5, 129.8, 129.0, 125.6, 119.0, 13.1, 11.2; HRMS (ESI): m/z calculated for C₁₃H₁₁N₃O₂ 242.0930 found 242.0967 [M+H]+.

2.1.1.14 2-(4-bromophenyl)quinazolin-4(3H)-one (**3n**)

White solid; yield 80 %; mp:122-125 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.20-8.10 (m, 2H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.95 (d, *J* = 1.8 Hz, 1H), 7.68 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.62 (t, *J* = 7.3 Hz, 1H), 7.56 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.3, 154.2, 150.2, 132.7, 132.2, 130.0, 129.9, 129.1, 128.6, 128.4, 120.5; HRMS (ESI): m/z calculated for C₁₄H₉BrN₂O 300.9977 found 300.9952 [M+2]+.

2.1.1.15 4-(4-oxo-3,4-dihydroquinazolin-2-yl)benzonitrile (30)

White solid; yield 75 %; mp:124-127 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.41 (s, 1H), 7.67 (d, J = 16.3 Hz, 1H), 7.65-7.59 (m, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.50 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.8 Hz, 1H), 7.30-7.24 (m, 1H), 7.23 (s, 1H), 6.77 (d, J = 8.1 Hz, 1H), 6.69 (t, J = 7.4 Hz, 1H), 5.79 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 162.0, 149.1, 147.1, 146.6, 144.5, 135.1, 127.7,

126.9, 126.4, 121.6, 114.9, 112.9; HRMS (ESI): m/z calculated for C₁₅H₉N₃O 248.0824 found 248.0857 [M+H]+.

2.1.2 General Experimental Procedure for the Synthesis of piperazine amide derivatives (8a-z);

To the mixture of substituted benzoic acids (**7a-i**, 1mmol) and HATU (1mmol), DMF (3mL) was added slowly under nitrogen atmosphere. The reaction mixture was then stirred for 20 minutes at 0 $^{\circ}$ C, followed by the addition of 2-phenyl-4-(piperazin-1-yl) quinazoline (**6a-h**, 1mmol). The reaction mixture was stirred for 20 minutes at room temperature, followed by the addition of DIPEA. Upon completion of the reaction as monitored by TLC, crushed ice was added to the reaction mixture. The resulting solid was then subjected to vacuum filtration, excess of water was used to wash off the insoluble solids to obtain crude powder which was purified using column chromatography (elution with hexane/EtOAc = 7:3). The pure products were collected as white color solids in good yields.

2.1.2.1 (4-(dimethylamino)phenyl)(4-(2-phenylquinazolin-4-yl)piperazin-1-yl)methanone (8a)

White solid; Yield 73 %; mp: 125-128 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.57–8.46 (m, 2H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 1H), 7.57–7.49 (m, 4H), 7.37 (d, *J* = 8.7 Hz, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 3.91 (s, 4H), 3.81 (s, 4H), 2.97 (s, 6H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 170.5, 164.5, 158.5, 152.6, 151.7, 138.4, 133.4, 130.8, 129.6, 129.0, 128.8, 128.4, 125.9, 125.8, 122.3, 115.2, 111.5, 49.5, 40.2; HRMS (ESI): m/z calculated for C₂₇H₂₇N₅O 438.2294 found 438.2324 [M+H]+.

2.1.2.2 4-(4-(2-phenylquinazolin-4-yl)piperazine-1-carbonyl)benzonitrile (8b)

White solid; Yield 73 %; mp: 123-126 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.55–8.47 (m, 2H), 8.07 (d, *J* = 8.3 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.85 (dd, *J* = 11.2, 4.1 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.57–7.47 (m, 4H), 4.02–3.80 (m, 6H), 3.59 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 168.1, 164.5, 158.5, 152.5, 140.8, 138.4, 133.5, 133.0, 130.8, 128.9, 128.8, 128.5, 128.4, 125.9, 125.7, 118.8, 115.2, 112.6, 49.3; HRMS (ESI): m/z calculated for C₂₆H₂₁N₅O 420.1824 found 420.1850 [M+H]+.

2.1.2.3 (3,5-dimethoxyphenyl)(4-(2-phenylquinazolin-4-yl)piperazin-1-yl)methanone (8c)

White solid; Yield 73 %; mp: 128-131 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.53-8.49 (m, 2H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 1H), 7.68–7.43 (m, 3H), 6.60

(s, 2H), 4.13–3.83 (m, 2H), 3.78 (s, 2H), 3.62 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6): δ 170.5, 164.5, 158.5, 152.6, 151.7, 138.4, 133.4, 130.8, 129.6, 129.0, 128.8, 128.4, 125.9, 125.8, 122.3, 115.2, 111.5, 49.5, 40.2; HRMS (ESI): m/z calculated for C₂₇H₂₆N₄O₃ 455.2083 found 455.2116 [M+H]+.

2.1.2.4 (4-(2-phenylquinazolin-4-yl)piperazin-1-yl)(3,4,5-trimethoxyphenyl)methanone (8d)

White solid; Yield 73 %; mp: 125-128 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.52 (s, 2H), 8.08 (d, J = 7.4 Hz, 1H), 7.91 (s, 1H), 7.85 (s, 1H), 7.61-7.47(s, 4H), 6.89-6.66 (s, 2H), 3.94 (s, 3H), 3.83 (s, 3H), 3.72 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.5, 164.5, 158.5, 153.3, 152.5, 138.9, 138.4, 133.4, 131.6, 130.8, 130.7, 128.8, 128.6, 128.4, 125.9, 125.8, 115.1, 105.1, 60.5, 56.6, 49.4; HRMS (ESI): m/z calculated for C₂₈H₂₈N₄O₄ 485.2189 found 485.2210 [M+H]+.

2.1.2.5 Naphthalen-2-yl(4-(2-phenylquinazolin-4-yl)piperazin-1-yl)methanone (8e)

White solid; Yield 73 %; mp: 122-126 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.51 (d, *J* = 3.5 Hz, 2H), 8.09 (s, 2H), 8.06–7.98 (m, 3H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.85 (t, *J* = 7.4 Hz, 1H), 7.62 (d, *J* = 7.7 Hz, 3H), 7.58–7.44 (m, 4H), 3.85 (d, *J* = 125.6 Hz, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.8, 164.5, 158.5, 152.6, 138.4, 133.6, 133.6, 132.7, 130.84, 128.8, 128.5, 128.4, 128.1, 127.6, 127.2, 127.1, 125.9, 125.8, 125.0, 115.2, 49.5; HRMS (ESI): m/z calculated for C₂₉H₂₄N₄O 445.2028 found 445.2060 [M+H]+.

2.1.2.6 (5-chlorothiophen-2-yl)(4-(2-phenylquinazolin-4-yl)piperazin-1-yl)methanone (8f)

White solid; Yield 73 %; mp: 134-138 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.56–8.47 (m, 2H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.85 (t, *J* = 7.5 Hz, 1H), 7.60-7.48 (m, 4H), 7.45 (d, *J* = 3.9 Hz, 1H), 7.21 (d, *J* = 3.9 Hz, 1H), 4.05-3.85 (m, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 164.2, 161.7, 158.5, 152.6, 138.5, 137.2, 133.4, 132.7, 130.8, 130.1, 128.8, 128.4, 127.7, 125.8, 115.1, 49.0; HRMS (ESI): m/z calculated for C₂₃H₁₉ClN₄OS 435.1046 found 435.1070 [M+H]+.

2.1.2.7 (5-bromo-2-chlorophenyl)(4-(2-phenylquinazolin-4-yl)piperazin-1-yl)methanone (**8g**)

White solid; Yield 73 %; mp: 133-136 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.55-8.49 (m, 2H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.85 (t, *J* = 7.1 Hz, 1H), 7.75 (d, *J* = 8.6 Hz, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 7.57–7.46 (m, 5H), 4.05-3.91 (m, 6H), 3.46 (d, *J* = 4.2 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 165.7, 164.6, 158.5, 152.5, 140.0, 138.3, 134.8, 133.5, 133.4, 131.0, 130.8, 128.8, 128.4, 128.3, 126.0, 125.7, 117.4, 115.2, 49.4, 46.4; HRMS (ESI): m/z calculated for C₂₅H₂₀BrClN₄O 507.0587 found 509.0565 [M+H]+.

2.1.2.8 (4-iodophenyl)(4-(2-phenylquinazolin-4-yl)piperazin-1-yl)methanone (8h)

White solid; Yield 73 %; mp: 129-132 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.58–8.46 (m, 2H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.85 (t, *J* = 10.0 Hz, 1H), 7.60–7.46 (m, 4H), 7.30 (d, *J* = 8.2 Hz, 1H), 4.10-3.88 (m, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.0, 164.5, 158.5, 152.6, 138.4, 137.7, 135.6, 133.4, 130.8, 129.6, 128.8, 128.8, 128.4, 125.9, 125.7, 115.2, 96.9, 49.4; HRMS (ESI): m/z calculated for C₂₅H₂₁IN₄O 521.0838 found 521.0864 [M+H]+.

2.1.2.9 (4-iodophenyl)(4-(2-(3,4,5-trimethoxyphenyl)quinazolin-4-yl)piperazin-1-yl)methanone (**8i**) White solid; Yield 73 %; mp: 127-130 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.16 (d, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 8.1 Hz, 3H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.58 (s, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.23 (d, *J* = 7.7 Hz, 2H), 3.92 (s, 6H), 3.76 (s, 3H), 3.55-3.38 (m, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 168.9, 162.7, 153.3, 152.1, 149.1, 140.7, 137.7, 135.4, 135.0, 129.5, 128.1, 127.9, 126.9, 126.3, 121.3, 105.7, 60.6, 56.6; HRMS (ESI): m/z calculated for C₂₈H₂₇IN₄O₄ 611.1155 found 611.1189 [M+H]+.

2.1.2.10 (5-bromo-2-chlorophenyl)(4-(2-(3,4,5-trimethoxyphenyl)quinazolin-4-yl)piperazin-1yl)methanone (**8***j*)

White solid; Yield 73 %; mp: 126-129 °C; ¹H NMR (500 MHz, DMSO- d_6): δ 8.16 (d, J = 7.0 Hz, 1H), 7.84 (t, J = 7.0 Hz, 1H), 7.74 (d, J = 6.7 Hz, 1H), 7.69 (d, J = 8.5 Hz, 1H), 7.58 (s, 3H), 7.51 (d, J = 6.4 Hz, 1H), 7.47 (d, J = 8.6 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 3.91 (s, 6H), 3.70-3.50 (s, 4H), 3.62 (s, 3H), 3.28–3.08 (m, 4H); ¹³C NMR (125 MHz, DMSO- d_6): δ 162.9, 153.3, 152.3, 149.1, 140.7, 135.0, 128.2, 127.8, 126.8, 126.3, 121.3, 105.7, 60.6, 56.6; HRMS (ESI): m/z calculated for C₂₈H₂₆BrClN₄O₄ 597.0904 found 599.0900 [M+2]+.

2.1.2.11 Naphthalen-2-yl(4-(2-(3,4,5-trimethoxyphenyl)quinazolin-4-yl)piperazin-1-yl)methanone (8k)

White solid; Yield 73 %; mp: 132-136 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.17 (d, *J* = 7.8 Hz, 1H), 8.03 (s, 3H), 7.99–7.94 (m, 2H), 7.84 (t, *J* = 7.6 Hz, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.60 (s, 2H), 7.56 (s, 1H), 7.56–7.50 (m, 2H), 3.95-3.71 (m, 9H), 3.70-3.37 (m, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.8, 162.8, 153.4, 152.2, 149.2, 140.8, 137.7, 135.1, 133.6, 133.45, 132.7, 129.6, 128.7, 128.6, 128.1, 127.9, 127.6, 127.2, 127.1, 126.94, 126.3, 124.9, 121.3, 105.7, 60.6, 56.6; HRMS (ESI): m/z calculated for C₃₂H₃₀IN₄O₄ 535.2345 found 535.2380 [M+H]+.

2.1.2.12 4-(4-(2-(3,4-dimethoxyphenyl)quinazolin-4-yl)piperazine-1-carbonyl)benzonitrile (81)

White solid; Yield 73 %; mp: 133-136 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.10 (d, *J* = 8.4 Hz, 1H), 8.09–8.02 (m, 2H), 7.97 (d, *J* = 8.2 Hz, 2H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.82 (t, *J* = 7.5 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.51 (t, *J* = 7.5 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H), 4.05-3.91 (m, 6H), 3.85 (s, 3H), 3.80 (s, 3H), 3.59 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 168.1, 164.4, 158.3, 152.6, 151.5, 149.0, 140.8, 133.3, 133.0, 131.0, 128.6, 128.4, 125.7, 125.5, 121.8, 118.8, 114.9, 112.6, 111.7, 111.5, 56.0, 49.3; HRMS (ESI): m/z calculated for C₂₈H₂₅N₅O₃ 480.2036 found 480.2079 [M+H]+.

2.1.2.13 (4-(2-(3,4-dimethoxyphenyl)quinazolin-4-yl)piperazin-1-yl)(4-

(trifluoromethyl)phenyl)methanone (8m)

White solid; Yield 73 %; mp: 127-130 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.09 (d, *J* = 16.2 Hz, 3H), 7.88 (s, 4H), 7.73 (s, 2H), 7.51 (s, 1H), 7.09 (s, 1H), 4.11–3.74 (m, 12H), 3.61 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 168.4, 164.4, 158.4, 152.6, 151.5, 149.0, 140.4, 133.4, 130.9, 130.1, 128.6, 128.3, 126.0, 125.7, 125.5, 123.3, 121.8, 114.9, 111.7, 111.5, 55.9, 49.4; HRMS (ESI): m/z calculated for C₂₈H₂₅F₃N₄O₃ 523.1957 found 523.1980 [M+H]+.

2.1.2.14 (4-(dimethylamino)phenyl)(4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1-yl)methanone (8n)

White solid; Yield 73 %; mp: 125-128 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.55-8.48 (m, 2H), 8.08 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 1H), 7.54–7.50 (m, 3H), 7.37 (d, *J* = 8.7 Hz, 2H), 6.74 (d, *J* = 8.8 Hz, 2H), 3.91 (s, 4H), 3.81 (s, 4H), 2.97 (s, 6H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 170.5, 164.5, 158.5, 152.6, 151.7, 138.4, 133.4, 130.8, 129.6, 128.8, 128.4, 125.8, 125.8, 122.3, 115.2, 111.5, 49.5, 40.3; HRMS (ESI): m/z calculated for C₂₆H₂₆N₆O 439.2246 found 439.2272 [M+H]+.

2.1.2.15 Naphthalen-2-yl(4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1-yl)methanone (80)

White solid; Yield 73 %; mp: 131-135 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.51 (d, *J* = 3.5 Hz, 2H), 8.09 (s, 2H), 8.06–7.95 (m, 3H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.85 (t, *J* = 7.4 Hz, 1H), 7.65-7.58 (m, 3H), 7.55-7.49 (m, 3H), 3.90-3.75 (m, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.8, 164.5, 158.5, 152.6, 138.4, 133.6, 133.6, 133.4, 132.7, 130.8, 128.8, 128.86, 128.5, 128.4, 128.1, 127.6, 127.2, 127.1, 125.9, 125.8, 125.0, 115.2, 49.5; HRMS (ESI): m/z calculated for C₂₈H₂₃N₅O 446.1981 found 446.1998 [M+H]+.

2.1.2.16 (3,5-dimethoxyphenyl)(4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1-yl)methanone (**8p**)

White solid; Yield 73 %; mp: 128-132 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.56-8.49 (m, 2H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.8 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 1H), 7.53–7.49 (m, 3H), 6.60 (s, 3H), 4.01–3.83 (m, 6H), 3.82-3.77 (m, 6H), 3.62 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.3, 164.5, 160.9, 158.5, 152.6, 138.4, 133.4, 130.8, 128.8, 128.4, 125.9, 125.8, 115.2, 105.2, 101.7, 55.9, 49.4; HRMS (ESI): m/z calculated for C₂₆H₂₅N₅O₃ 456.2036 found 456.2072 [M+H]+. 2.1.2.17 (4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1-yl)(3,4,5-trimethoxyphenyl)methanone (**8***q*)

White solid; Yield 73 %; mp: 130-134 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.52 (s, 2H), 8.08 (d, J = 7.4 Hz, 1H), 7.91 (s, 1H), 7.85 (s, 1H), 7.53 (s, 3H), 6.78 (s, 2H), 3.90-3.41 (m, 17H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 190.3, 169.5, 164.4, 158.5, 153.3, 152.5, 138.9, 138.4, 133.4, 131.6, 130.8, 128.8, 128.4, 125.8, 115.2, 105.1, 60.5, 56.6, 49.4; HRMS (ESI): m/z calculated for C₂₇H₂₇N₅O₄ 486.2141 found 486.2168 [M+H]+.

2.1.2.18 (4-iodophenyl)(4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1-yl)methanone (8r)

White solid; Yield 73 %; mp: 125-128 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.57–8.46 (m, 2H), 8.07 (d, *J* = 8.2 Hz, 1H), 7.92 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 8.1 Hz, 2H), 7.59–7.48 (m, 4H), 7.30 (d, *J* = 8.2 Hz, 2H), 3.85-3.76 (m, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.0, 164.5, 158.5, 152.6, 138.4, 137.7, 135.6, 133.4, 130.8, 129.6, 128.8, 128.4, 125.9, 125.7, 115.2, 96.9, 49.4; HRMS (ESI): m/z calculated for C₂₄H₂₀IN₅O 522.0791 found 522.0819 [M+H]+.

2.1.2.19 (4,5-dimethoxy-2-nitrophenyl)(4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1yl)methanone (**8**s)

White solid; Yield 73 %; mp: 127-130 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.51 (s, 2H), 8.09 (s, 1H), 7.92 (s, 1H), 7.86 (s, 1H), 7.76 (s, 1H), 7.52 (s, 3H), 7.16 (s, 1H), 4.10-3.95 (m, 9H), 3.82 (s, 3H), 3.49 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.4, 164.4, 158.5, 152.5, 138.4, 135.3, 133.4, 131.5, 130.8, 128.8, 128.8, 128.6, 128.5, 128.4, 125.8, 125.8, 115.2, 49.4, 45.2, 41.6; HRMS (ESI): m/z calculated for C₂₆H₂₄N₆O₅ 501.1886 found 501.1906 [M+H]+.

2.1.2.20 (5-bromo-2-chlorophenyl)(4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1-yl)methanone (8t)

White solid; Yield 73 %; mp: 125-128 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.56–8.46 (m, 2H), 8.08 (d, *J* = 8.1 Hz, 1H), 7.92 (d, *J* = 7.7 Hz, 1H), 7.85 (t, *J* = 7.1 Hz, 1H), 7.75 (d, *J* = 8.6 Hz, 1H), 7.62 (d, *J* = 2.5 Hz, 1H), 7.57–7.46 (m, 5H), 3.99-3.55 (m, 6H), 3.46 (d, *J* = 4.2 Hz, 2H); ¹³C NMR

(125 MHz, DMSO- d_6): δ 165.7, 164.6, 158.5, 152.5, 140.0, 138.3, 134.8, 133.5, 133.4, 131.0, 130.8, 128.8, 128.4, 128.3, 126.0, 125.7, 117.4, 115.2, 49.3, 46.4; HRMS (ESI): m/z calculated for C₂₄H₁₉BrClN₅O 508.0540 found 510.0532 [M+2]+.

2.1.2.21 2-(4-chlorophenyl)-1-(4-(2-(pyridin-4-yl)quinazolin-4-yl)piperazin-1-yl)ethan-1-one (**8u**) White solid; Yield 73 %; mp: 132-136 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.57–8.46 (m, 2H) 8.06 (d, *J* = 8.2 Hz, 1H), 7.91 (d, *J* = 7.9 Hz, 1H), 7.84 (t, *J* = 7.2 Hz, 1H), 7.54–7.51 (m, 3H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 3.82 (d, *J* = 8.9 Hz, 8H), 3.77 (d, *J* = 4.9 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 168.2, 164.2, 155.8, 152.4, 144.5, 140.8, 133.6, 133.0, 130.6, 129.0, 128.7, 128.4, 128.3, 125.9, 125.7, 118.8, 115.0, 112.7, 49.5; HRMS (ESI): m/z calculated for C₂₅H₂₂ClN₅O 444.1591 found 444.1623 [M+H]+.

2.1.2.22 (5-bromo-2-chlorophenyl)(4-(2-(thiophen-2-yl)quinazolin-4-yl)piperazin-1-yl)methanone (8v)

White solid; Yield 73 %; mp: 130-133 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.03 (d, *J* = 8.3 Hz, 1H), 8.00–7.97 (m, 1H), 7.84–7.80 (m, 2H), 7.74 (d, *J* = 8.6 Hz, 1H), 7.75-7.71 (m, 1H), 7.61 (d, *J* = 2.6 Hz, 1H), 7.53–7.45 (m, 2H), 7.22–7.18 (m, 1H), 3.98–3.80 (m, 6H), 3.43 (d, *J* = 3.3 Hz, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 165.9, 162.5, 150.7, 141.9, 139.6, 136.2, 136.0, 135.9, 134.7, 133.5, 133.1, 131.1, 129.9, 128.3, 127.6, 127.1, 114.6, 112.3, 112.1, 45.4; HRMS (ESI): m/z calculated for C₂₃H₁₈BrClN₄OS 513.0151 found 515.0139 [M+H]+.

2.1.2.23 (4,5-dimethoxy-2-nitrophenyl)(4-(2-(thiophen-2-yl)quinazolin-4-yl)piperazin-1yl)methanone (**8w**)

White solid; Yield 73 %; mp: 129-133 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.04 (d, *J* = 8.3 Hz, 1H), 8.00–7.96 (m, 1H), 7.85–7.80 (m, 2H), 7.75 (s, 1H), 7.75-7.71 (m, 1H), 7.54-7.50 (m, 1H), 7.24-7.19 (m, 1H), 7.15 (s, 1H), 4.02–3.87 (m, 10H), 3.78 (s, 2H), 3.47 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 166.2, 164.4, 155.7, 154.5, 152.4, 149.1, 144.4, 138.0, 133.6, 130.6, 129.0, 128.7, 128.3, 127.3, 125.9, 125.7, 115.1, 110.2, 107.8, 57.2, 56.7, 49.2, 46.3; HRMS (ESI): m/z calculated for C₂₅H₂₃N₅O₅S 506.1498 found 506.1536 [M+H]+.

2.1.2.24 Naphthalen-2-yl(4-(2-(thiophen-2-yl)quinazolin-4-yl)piperazin-1-yl)methanone (8x)

White solid; Yield 73 %; mp: 128-132 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.08 (s, 1H), 8.06– 7.96 (m, 5H), 7.84–7.79 (m, 2H), 7.74–7.70 (m, 1H), 7.65-7.57 (m, 3H), 7.53–7.47 (m, 1H), 7.22– 7.17 (m, 1H), 3.90-3.71 (m, 8H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 169.8, 164.2, 155.8, 152.4, 144.5, 133.6, 133.9, 132.7, 130.5, 129.0, 128.8, 128.6, 128.5, 128.3, 128.1, 127.6, 127.2, 127.1, 125.9, 125.6, 125.0, 115.0, 49.4; HRMS (ESI): m/z calculated for $C_{27}H_{22}N_4OS$ 451.1593 found 451.1624 [M+H]+.

2.1.2.25 4-(4-(2-(furan-2-yl)quinazolin-4-yl)piperazine-1-carbonyl)benzonitrile (8y)

White solid; Yield 73 %; mp: 128-132 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.15–7.90 (m, 4H), 7.83 (s, 2H), 7.77-7.69 (m, 3H), 7.51 (s, 1H), 7.20 (s, 1H), 4.16–3.73 (m, 6H), 3.57 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 168.1, 164.2, 155.7, 152.4, 144.4, 140.7, 133.6, 133.0, 130.5, 129.0, 128.6, 128.4, 128.3, 125.8, 125.6, 118.8, 115.0, 112.6, 49.2; HRMS (ESI): m/z calculated for C₂₄H₁₉N₅O₂ 410.1617 found 410.1649 [M+H]+.

2.1.2.26 (4,5-dimethoxy-2-nitrophenyl)(4-(2-(furan-2-yl)quinazolin-4-yl)piperazin-1-yl)methanone (8z)

White solid; Yield 73 %; mp: 132-136 °C; ¹H NMR (500 MHz, DMSO-*d*₆): δ 8.04 (d, *J* = 8.3 Hz, 1H), 8.00–7.96 (m, 1H), 7.85–7.80 (m, 2H), 7.75 (s, 1H), 7.73-7.69 (m, 1H), 7.55-7.51 (m, 1H), 7.20-7.17 (m, 1H), 7.15 (s, 1H), 4.02–3.87 (m, 10H), 3.78 (s, 2H), 3.47 (s, 2H); ¹³C NMR (125 MHz, DMSO-*d*₆): δ 166.2, 164.4, 155.7, 154.5, 152.4, 149.1, 144.4, 138.0, 133.6, 130.6, 129.0, 128.7, 128.3, 127.3, 125.9, 125.7, 115.1, 110.2, 107.8, 57.2, 56.7, 49.2, 46.3; HRMS (ESI): m/z calculated for C₂₅H₂₃N₅O₆ 490.1727 found 490.1752 [M+H]+.

2.2 Antibiotic susceptibility testing against ESKAP pathogen panel

Antibiotic susceptibility testing was carried out on the newly synthesized compounds by determining the Minimum Inhibitory Concentration (MIC) with reference to the standard CLSI guidelines [17, 18]. MIC is defined as the minimum concentration of compound at which visible bacterial growth is inhibited. Bacterial cultures were grown in Mueller-Hinton cation supplemented broth (CA-MHB). Optical density (OD_{600}) of the cultures was measured, followed by dilution for ~10⁶ cfu/mL. This inoculum was added into a series of test wells in a microtitre plate that contained various concentrations of compound under test ranging from 64-0.03 µg/mL. Controls i.e., cells alone and media alone (without compound+cells) and levofloxacin used as a reference standard. Plates were incubated at 37 °C for 16-18 h followed by observations of MIC values by the absence or presence of visible growth. For each compound, MIC determinations were performed independently thrice using duplicate samples each time.

2.3 Antibiotic susceptibility testing against pathogenic mycobacteria

Antimycobacterial susceptibility testing was carried out on the newly synthesized compounds by using broth micro dilution assay [19]. 1g/100 mL stock solutions of test and control compounds were prepared in DMSO and stored in -20 °C. Mycobacterial cultures were inoculated in Middlebrook 7H9 enriched (Difco, Becton, NJ, USA) media supplemented with 10% ADC-Tween-80 (Bovine Serum Albumin, Dextrose, 0.2% glycerol and 0.05% Tween-80) and OD₆₀₀ of the cultures was measured, followed by dilution to achieve ~10⁶ cfu/mL [20]. The newly synthesized compounds were tested from 0.0064–0.00005 g/100 mL in two-fold serial diluted fashion with 2.5 µL of each concentration added per well of a 96-well round bottom microtitre plate. Later, 97.5 µL of bacterial suspension was added to each well containing the test compound along with appropriate controls. Presto blue (Thermo Fisher, USA) resazurin-based dye was used for the visualized identification of active compounds. MIC of active compound was determined as lowest concentration swere replicated thrice using duplicate samples. The MIC plates were incubated at 37 °C for 7 days for Mtb.

3.0 Copies of spectra

Compound **3e**: ¹³C NMR (125 MHz, DMSO-*d*₆)

Compound **3k**: ¹³C NMR (125 MHz, DMSO-*d*₆).

Compound 8a: ¹H NMR (500 MHz, DMSO-*d*₆).

Compound 8a: ¹³C NMR (125 MHz, DMSO-*d*₆).

Compound 8r: ¹³C NMR (125 MHz, DMSO-*d*₆).

Compound 8w: ¹³C NMR (125 MHz, DMSO-*d*₆).

