Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Porous MOF-808@ PVDF Beads for Removal of Iodine from Gas Streams

Lingyu Wang,^a Peng Chen,^b Xiuting Dong,^b Wen Zhang,^{b*} Song Zhao,^b Songtao Xiao,^a Yinggen Ouvang^{a*}

^aDepartment of Radiochemistry, China Institute of Atomic Energy, Beijing 102413, China

^bState Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of

Membrane Science & Desalination Technology, and School of Chemical Engineering

and Technology, Tianjin University, Tianjin 300350, China

*To whom correspondence should be addressed. E-mail: zhang_wen@tju.edu.cn. oyyg@ciae.ac.cn.

Figure S1 SEM image for the outside surface of 808-PVDF0.7.

Figure S2 SEM image for the inner texture of 808-PVDF0.7.

	F atomic %	Zr atomic %	MOF-808 wt.%
808-PVDF0.3	85.88	8.55	36%
808-PVDF0.5	72.27	15.82	55%
808-PVDF0.7	44.53	19.44	71%

 Table S1 The contents of MOF-808 in 808-PVDFx beads

Figure S3 Adsorption curves for PVDF beads at 80 °C.

Figure S4 Adsorption curves for MOF-808 powder before and after activation. (activated using 250 mL DMF/25 mL ethylene glycol at 130 °C for 24 h)